Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls

This paper first shows the exact boundary controllability for a coupled system of wave equations with Neumann boundary controls. In order to establish the corresponding observability inequality, the authors introduce a compact perturbation method which does not depend on the Riesz basis property, bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2017-03, Vol.38 (2), p.473-488
Hauptverfasser: Li, Tatsien, Rao, Bopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 488
container_issue 2
container_start_page 473
container_title Chinese annals of mathematics. Serie B
container_volume 38
creator Li, Tatsien
Rao, Bopeng
description This paper first shows the exact boundary controllability for a coupled system of wave equations with Neumann boundary controls. In order to establish the corresponding observability inequality, the authors introduce a compact perturbation method which does not depend on the Riesz basis property, but depends only on the continuity of projection with respect to a weaker norm, which is obviously true in many cases of application. Next, in the case of fewer Neumann boundary controls, the non-exact boundary controllability for the initial data with the same level of energy is shown.
doi_str_mv 10.1007/s11401-017-1078-5
format Article
fullrecord <record><control><sourceid>wanfang_jour_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03548493v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxnk_e201702005</wanfj_id><sourcerecordid>sxnk_e201702005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-8958ebabacedcc544869f6ebb270b76b5c774ff08804fa7e67387f9c1c6fe9513</originalsourceid><addsrcrecordid>eNp1kcFq3DAQhkVpoNskD5CboIfSg5ORLFnSMYSkCSzNJTkLWSvtOvVKG8nO7r59ZFzaQulpYPjm42d-hC4IXBIAcZUJYUAqIKIiIGTFP6AFkQ1UDW3IR7QAymmluFKf0OecXwAIExwWaHV7MHbAbRzDyqQjtjEMKfa9abu-G47Yx4RN2Y673q1wPubBbXH0eG_eHHavoxm6GDLed8MG_3Dj1oTwjyyfoRNv-uzOf81T9Hx3-3RzXy0fvz_cXC8rW0s6VFJx6VrTGutW1nLGZKN849qWCmhF03IrBPMepATmjXCNqKXwyhLbeKc4qU_Rt9m7Mb3epW5bQuhoOn1_vdTTDmrOJFP128R-ndm9Cd6EtX6JYwolnc6H8FM7Wl4JFIAX8stM7lJ8HV0e_qCkRBFcUcEKRWbKpphzcv53AAJ6qkjPFeni1VNFejLT-SYXNqxd-sv836N3cYSUZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880759274</pqid></control><display><type>article</type><title>Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Tatsien ; Rao, Bopeng</creator><creatorcontrib>Li, Tatsien ; Rao, Bopeng</creatorcontrib><description>This paper first shows the exact boundary controllability for a coupled system of wave equations with Neumann boundary controls. In order to establish the corresponding observability inequality, the authors introduce a compact perturbation method which does not depend on the Riesz basis property, but depends only on the continuity of projection with respect to a weaker norm, which is obviously true in many cases of application. Next, in the case of fewer Neumann boundary controls, the non-exact boundary controllability for the initial data with the same level of energy is shown.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-017-1078-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis of PDEs ; Applications of Mathematics ; Controllability ; Mathematics ; Mathematics and Statistics ; Observability (systems) ; Optimization and Control ; Perturbation methods ; Wave equations</subject><ispartof>Chinese annals of mathematics. Serie B, 2017-03, Vol.38 (2), p.473-488</ispartof><rights>Fudan University and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-8958ebabacedcc544869f6ebb270b76b5c774ff08804fa7e67387f9c1c6fe9513</citedby><cites>FETCH-LOGICAL-c382t-8958ebabacedcc544869f6ebb270b76b5c774ff08804fa7e67387f9c1c6fe9513</cites><orcidid>0000-0002-8991-5893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxnk-e/sxnk-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-017-1078-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-017-1078-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03548493$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tatsien</creatorcontrib><creatorcontrib>Rao, Bopeng</creatorcontrib><title>Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>This paper first shows the exact boundary controllability for a coupled system of wave equations with Neumann boundary controls. In order to establish the corresponding observability inequality, the authors introduce a compact perturbation method which does not depend on the Riesz basis property, but depends only on the continuity of projection with respect to a weaker norm, which is obviously true in many cases of application. Next, in the case of fewer Neumann boundary controls, the non-exact boundary controllability for the initial data with the same level of energy is shown.</description><subject>Analysis of PDEs</subject><subject>Applications of Mathematics</subject><subject>Controllability</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Observability (systems)</subject><subject>Optimization and Control</subject><subject>Perturbation methods</subject><subject>Wave equations</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kcFq3DAQhkVpoNskD5CboIfSg5ORLFnSMYSkCSzNJTkLWSvtOvVKG8nO7r59ZFzaQulpYPjm42d-hC4IXBIAcZUJYUAqIKIiIGTFP6AFkQ1UDW3IR7QAymmluFKf0OecXwAIExwWaHV7MHbAbRzDyqQjtjEMKfa9abu-G47Yx4RN2Y673q1wPubBbXH0eG_eHHavoxm6GDLed8MG_3Dj1oTwjyyfoRNv-uzOf81T9Hx3-3RzXy0fvz_cXC8rW0s6VFJx6VrTGutW1nLGZKN849qWCmhF03IrBPMepATmjXCNqKXwyhLbeKc4qU_Rt9m7Mb3epW5bQuhoOn1_vdTTDmrOJFP128R-ndm9Cd6EtX6JYwolnc6H8FM7Wl4JFIAX8stM7lJ8HV0e_qCkRBFcUcEKRWbKpphzcv53AAJ6qkjPFeni1VNFejLT-SYXNqxd-sv836N3cYSUZg</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Li, Tatsien</creator><creator>Rao, Bopeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>School of Mathematical Sciences, Fudan University, Shanghai 200433, China</general><general>Shanghai Key Laboratory for Contemporary Applied Mathematics</general><general>Nonlinear Mathematical Modeling and Methods Laboratory%Institut de Recherche Mathématique Avancée, Université de Strasbourg, 67084 Strasbourg, France</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8991-5893</orcidid></search><sort><creationdate>20170301</creationdate><title>Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls</title><author>Li, Tatsien ; Rao, Bopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-8958ebabacedcc544869f6ebb270b76b5c774ff08804fa7e67387f9c1c6fe9513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis of PDEs</topic><topic>Applications of Mathematics</topic><topic>Controllability</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Observability (systems)</topic><topic>Optimization and Control</topic><topic>Perturbation methods</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tatsien</creatorcontrib><creatorcontrib>Rao, Bopeng</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tatsien</au><au>Rao, Bopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>38</volume><issue>2</issue><spage>473</spage><epage>488</epage><pages>473-488</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>This paper first shows the exact boundary controllability for a coupled system of wave equations with Neumann boundary controls. In order to establish the corresponding observability inequality, the authors introduce a compact perturbation method which does not depend on the Riesz basis property, but depends only on the continuity of projection with respect to a weaker norm, which is obviously true in many cases of application. Next, in the case of fewer Neumann boundary controls, the non-exact boundary controllability for the initial data with the same level of energy is shown.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-017-1078-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8991-5893</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0252-9599
ispartof Chinese annals of mathematics. Serie B, 2017-03, Vol.38 (2), p.473-488
issn 0252-9599
1860-6261
language eng
recordid cdi_hal_primary_oai_HAL_hal_03548493v1
source SpringerNature Journals; Alma/SFX Local Collection
subjects Analysis of PDEs
Applications of Mathematics
Controllability
Mathematics
Mathematics and Statistics
Observability (systems)
Optimization and Control
Perturbation methods
Wave equations
title Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20boundary%20controllability%20for%20a%20coupled%20system%20of%20wave%20equations%20with%20Neumann%20boundary%20controls&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Li,%20Tatsien&rft.date=2017-03-01&rft.volume=38&rft.issue=2&rft.spage=473&rft.epage=488&rft.pages=473-488&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-017-1078-5&rft_dat=%3Cwanfang_jour_hal_p%3Esxnk_e201702005%3C/wanfang_jour_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880759274&rft_id=info:pmid/&rft_wanfj_id=sxnk_e201702005&rfr_iscdi=true