An Integrative Approach for Analysis of Nonlinear Electrical Circuits Using-Polynomial B-Spline Expansion and B-Spline Krawczyk Operator

This paper addresses the problem of finding a set of all direct current (DC) operating points of a nonlinear circuit, which is a crucial step in its development and requires the solution of a nonlinear system of polynomial equations. We propose a novel algorithm for finding the set of all solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2022-02, Vol.8 (1), Article 1
Hauptverfasser: Gawali, D. D., Zidna, A., Nataraj, P. S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title International journal of applied and computational mathematics
container_volume 8
creator Gawali, D. D.
Zidna, A.
Nataraj, P. S. V.
description This paper addresses the problem of finding a set of all direct current (DC) operating points of a nonlinear circuit, which is a crucial step in its development and requires the solution of a nonlinear system of polynomial equations. We propose a novel algorithm for finding the set of all solutions of nonlinear electrical circuits, which are modeled as systems of n polynomial equations contained in an n dimensional box. The proposed algorithm is based on the following techniques: (i) B-Spline expansion to obtain a polynomial B-Spline form of the original polynomial in power form; (ii) B-Spline Krawczyk contractor for domain pruning. To avoid the repeated evaluation of function value the algorithm suggested uses B-Spline coefficients to find the value of Krawczyk operator and the computation of derivative of polynomial function. We solved three circuit analysis problems using the proposed algorithm and compared the performance of proposed algorithm with INTLAB-based solver and found that the former is more efficient in terms of computation time and number of iterations.
doi_str_mv 10.1007/s40819-021-01198-w
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03548124v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2606189302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268w-95b35a23a93e463573d07b4bcec4a4982e26eedd4cd68f1ff5602f63d3433a2e3</originalsourceid><addsrcrecordid>eNp9kctOwzAURCMEEgj4AVaWWLEw-BUnXoaqPEQFSNC15TpOawh2sFNK-QI-G5cg2LHy1fWZudJMlh1hdIoRKs4iQyUWEBEMEcaihKutbI9gIWBeCL6dZsrSjBHdzQ5jfEIooaxApNzLPisHrl1v5kH19s2AquuCV3oBGh9A5VS7jjYC34Bb71rrjApg3BrdB6tVC0Y26KXtI5hG6-bw3rdr519s-jmHD92GB-P3TrlovQPK1X_rm6BW-mP9DO46k077cJDtNKqN5vDn3c-mF-PH0RWc3F1ej6oJ1ISXKyjyGc0VoUpQwzjNC1qjYsZm2mimmCiJIdyYuma65mWDmybniDSc1pRRqoih-9nJ4LtQreyCfVFhLb2y8qqayM0O0ZyVmLA3nNjjgU2ZvC5N7OWTX4YUSpSEI45LQRFJFBkoHXyMwTS_thjJTUFyKEim1OV3QXKVRHQQxQS7uQl_1v-ovgCc0pR-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606189302</pqid></control><display><type>article</type><title>An Integrative Approach for Analysis of Nonlinear Electrical Circuits Using-Polynomial B-Spline Expansion and B-Spline Krawczyk Operator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gawali, D. D. ; Zidna, A. ; Nataraj, P. S. V.</creator><creatorcontrib>Gawali, D. D. ; Zidna, A. ; Nataraj, P. S. V.</creatorcontrib><description>This paper addresses the problem of finding a set of all direct current (DC) operating points of a nonlinear circuit, which is a crucial step in its development and requires the solution of a nonlinear system of polynomial equations. We propose a novel algorithm for finding the set of all solutions of nonlinear electrical circuits, which are modeled as systems of n polynomial equations contained in an n dimensional box. The proposed algorithm is based on the following techniques: (i) B-Spline expansion to obtain a polynomial B-Spline form of the original polynomial in power form; (ii) B-Spline Krawczyk contractor for domain pruning. To avoid the repeated evaluation of function value the algorithm suggested uses B-Spline coefficients to find the value of Krawczyk operator and the computation of derivative of polynomial function. We solved three circuit analysis problems using the proposed algorithm and compared the performance of proposed algorithm with INTLAB-based solver and found that the former is more efficient in terms of computation time and number of iterations.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-021-01198-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Applications of Mathematics ; Applied mathematics ; B spline functions ; Circuits ; Computational mathematics ; Computational Science and Engineering ; Computer Science ; Direct current ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nonlinear systems ; Nuclear Energy ; Operations Research/Decision Theory ; Operators (mathematics) ; Original Paper ; Polynomials ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2022-02, Vol.8 (1), Article 1</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268w-95b35a23a93e463573d07b4bcec4a4982e26eedd4cd68f1ff5602f63d3433a2e3</citedby><cites>FETCH-LOGICAL-c268w-95b35a23a93e463573d07b4bcec4a4982e26eedd4cd68f1ff5602f63d3433a2e3</cites><orcidid>0000-0002-2676-3570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-021-01198-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-021-01198-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03548124$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gawali, D. D.</creatorcontrib><creatorcontrib>Zidna, A.</creatorcontrib><creatorcontrib>Nataraj, P. S. V.</creatorcontrib><title>An Integrative Approach for Analysis of Nonlinear Electrical Circuits Using-Polynomial B-Spline Expansion and B-Spline Krawczyk Operator</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>This paper addresses the problem of finding a set of all direct current (DC) operating points of a nonlinear circuit, which is a crucial step in its development and requires the solution of a nonlinear system of polynomial equations. We propose a novel algorithm for finding the set of all solutions of nonlinear electrical circuits, which are modeled as systems of n polynomial equations contained in an n dimensional box. The proposed algorithm is based on the following techniques: (i) B-Spline expansion to obtain a polynomial B-Spline form of the original polynomial in power form; (ii) B-Spline Krawczyk contractor for domain pruning. To avoid the repeated evaluation of function value the algorithm suggested uses B-Spline coefficients to find the value of Krawczyk operator and the computation of derivative of polynomial function. We solved three circuit analysis problems using the proposed algorithm and compared the performance of proposed algorithm with INTLAB-based solver and found that the former is more efficient in terms of computation time and number of iterations.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>B spline functions</subject><subject>Circuits</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Direct current</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear systems</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAURCMEEgj4AVaWWLEw-BUnXoaqPEQFSNC15TpOawh2sFNK-QI-G5cg2LHy1fWZudJMlh1hdIoRKs4iQyUWEBEMEcaihKutbI9gIWBeCL6dZsrSjBHdzQ5jfEIooaxApNzLPisHrl1v5kH19s2AquuCV3oBGh9A5VS7jjYC34Bb71rrjApg3BrdB6tVC0Y26KXtI5hG6-bw3rdr519s-jmHD92GB-P3TrlovQPK1X_rm6BW-mP9DO46k077cJDtNKqN5vDn3c-mF-PH0RWc3F1ej6oJ1ISXKyjyGc0VoUpQwzjNC1qjYsZm2mimmCiJIdyYuma65mWDmybniDSc1pRRqoih-9nJ4LtQreyCfVFhLb2y8qqayM0O0ZyVmLA3nNjjgU2ZvC5N7OWTX4YUSpSEI45LQRFJFBkoHXyMwTS_thjJTUFyKEim1OV3QXKVRHQQxQS7uQl_1v-ovgCc0pR-</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gawali, D. D.</creator><creator>Zidna, A.</creator><creator>Nataraj, P. S. V.</creator><general>Springer India</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2676-3570</orcidid></search><sort><creationdate>20220201</creationdate><title>An Integrative Approach for Analysis of Nonlinear Electrical Circuits Using-Polynomial B-Spline Expansion and B-Spline Krawczyk Operator</title><author>Gawali, D. D. ; Zidna, A. ; Nataraj, P. S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268w-95b35a23a93e463573d07b4bcec4a4982e26eedd4cd68f1ff5602f63d3433a2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>B spline functions</topic><topic>Circuits</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Direct current</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear systems</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gawali, D. D.</creatorcontrib><creatorcontrib>Zidna, A.</creatorcontrib><creatorcontrib>Nataraj, P. S. V.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gawali, D. D.</au><au>Zidna, A.</au><au>Nataraj, P. S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrative Approach for Analysis of Nonlinear Electrical Circuits Using-Polynomial B-Spline Expansion and B-Spline Krawczyk Operator</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><artnum>1</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>This paper addresses the problem of finding a set of all direct current (DC) operating points of a nonlinear circuit, which is a crucial step in its development and requires the solution of a nonlinear system of polynomial equations. We propose a novel algorithm for finding the set of all solutions of nonlinear electrical circuits, which are modeled as systems of n polynomial equations contained in an n dimensional box. The proposed algorithm is based on the following techniques: (i) B-Spline expansion to obtain a polynomial B-Spline form of the original polynomial in power form; (ii) B-Spline Krawczyk contractor for domain pruning. To avoid the repeated evaluation of function value the algorithm suggested uses B-Spline coefficients to find the value of Krawczyk operator and the computation of derivative of polynomial function. We solved three circuit analysis problems using the proposed algorithm and compared the performance of proposed algorithm with INTLAB-based solver and found that the former is more efficient in terms of computation time and number of iterations.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-021-01198-w</doi><orcidid>https://orcid.org/0000-0002-2676-3570</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2022-02, Vol.8 (1), Article 1
issn 2349-5103
2199-5796
language eng
recordid cdi_hal_primary_oai_HAL_hal_03548124v1
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Applications of Mathematics
Applied mathematics
B spline functions
Circuits
Computational mathematics
Computational Science and Engineering
Computer Science
Direct current
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nonlinear systems
Nuclear Energy
Operations Research/Decision Theory
Operators (mathematics)
Original Paper
Polynomials
Theoretical
title An Integrative Approach for Analysis of Nonlinear Electrical Circuits Using-Polynomial B-Spline Expansion and B-Spline Krawczyk Operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrative%20Approach%20for%20Analysis%20of%20Nonlinear%20Electrical%20Circuits%20Using-Polynomial%20B-Spline%20Expansion%20and%20B-Spline%20Krawczyk%20Operator&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Gawali,%20D.%20D.&rft.date=2022-02-01&rft.volume=8&rft.issue=1&rft.artnum=1&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-021-01198-w&rft_dat=%3Cproquest_hal_p%3E2606189302%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606189302&rft_id=info:pmid/&rfr_iscdi=true