Medians in median graphs and their cube complexes in linear time

The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs. We also present a linear time algorithm to compute medians in the assoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 2022-06, Vol.126, p.80-105
Hauptverfasser: Bénéteau, Laurine, Chalopin, Jérémie, Chepoi, Victor, Vaxès, Yann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 80
container_title Journal of computer and system sciences
container_volume 126
creator Bénéteau, Laurine
Chalopin, Jérémie
Chepoi, Victor
Vaxès, Yann
description The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs. We also present a linear time algorithm to compute medians in the associated ℓ1-cube complexes. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ-classes) via Lexicographic Breadth First Search (LexBFS). We show that any LexBFS ordering of the vertices of a median graph satisfies the following fellow traveler property: the parents of any two adjacent vertices are also adjacent. Using the fast computation of the Θ-classes, we also compute the Wiener index (total distance) in linear time and the distance matrix in optimal quadratic time.
doi_str_mv 10.1016/j.jcss.2022.01.001
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03547953v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000022000034</els_id><sourcerecordid>S0022000022000034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-773a90dc9567b8a5cc4392e503a297a7ddb3bae41a5b02fe81e68f111bba192a3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApxy5dASJ23TShyYJmBIQ1zgHLmpy1J17ZSUCd6edkMc8cVW8v2W_DF2DSIGAdltEzc2hFgKKWMBsRBwwmYgChFJLZNTNhPjTyTGOmcXITQjAGmmZuz-hSqHXeCu49vDyD887jaBY1fxYUPOc_tZErf9dtfSFx3I1nWEng9uS5fsrMY20NVvn7P3x4e35Spavz49LxfryCqdD5HWCgtR2SLNdJljam2iCkmpUCgLjbqqSlUiJYBpKWRNOVCW1wBQlgiFRDVnN8e9G2zNzrst-m_TozOrxdpMb0KliS5StYeRlUfW-j4ET_VfAISZfJnGTL7M5MsIMKOOMXR3DNF4xd6RN8E66uwoxZMdTNW7_-I_UcJytA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Medians in median graphs and their cube complexes in linear time</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bénéteau, Laurine ; Chalopin, Jérémie ; Chepoi, Victor ; Vaxès, Yann</creator><creatorcontrib>Bénéteau, Laurine ; Chalopin, Jérémie ; Chepoi, Victor ; Vaxès, Yann</creatorcontrib><description>The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs. We also present a linear time algorithm to compute medians in the associated ℓ1-cube complexes. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ-classes) via Lexicographic Breadth First Search (LexBFS). We show that any LexBFS ordering of the vertices of a median graph satisfies the following fellow traveler property: the parents of any two adjacent vertices are also adjacent. Using the fast computation of the Θ-classes, we also compute the Wiener index (total distance) in linear time and the distance matrix in optimal quadratic time.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2022.01.001</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>CAT cube complex ; Combinatorics ; Computational Geometry ; Computer Science ; Data Structures and Algorithms ; Discrete Mathematics ; Event structures ; LexBFS ; Linear time algorithm ; Mathematics ; Median graph ; Median problem ; Metric Geometry</subject><ispartof>Journal of computer and system sciences, 2022-06, Vol.126, p.80-105</ispartof><rights>2022 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-773a90dc9567b8a5cc4392e503a297a7ddb3bae41a5b02fe81e68f111bba192a3</citedby><cites>FETCH-LOGICAL-c378t-773a90dc9567b8a5cc4392e503a297a7ddb3bae41a5b02fe81e68f111bba192a3</cites><orcidid>0000-0002-2988-8969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcss.2022.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03547953$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bénéteau, Laurine</creatorcontrib><creatorcontrib>Chalopin, Jérémie</creatorcontrib><creatorcontrib>Chepoi, Victor</creatorcontrib><creatorcontrib>Vaxès, Yann</creatorcontrib><title>Medians in median graphs and their cube complexes in linear time</title><title>Journal of computer and system sciences</title><description>The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs. We also present a linear time algorithm to compute medians in the associated ℓ1-cube complexes. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ-classes) via Lexicographic Breadth First Search (LexBFS). We show that any LexBFS ordering of the vertices of a median graph satisfies the following fellow traveler property: the parents of any two adjacent vertices are also adjacent. Using the fast computation of the Θ-classes, we also compute the Wiener index (total distance) in linear time and the distance matrix in optimal quadratic time.</description><subject>CAT cube complex</subject><subject>Combinatorics</subject><subject>Computational Geometry</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Discrete Mathematics</subject><subject>Event structures</subject><subject>LexBFS</subject><subject>Linear time algorithm</subject><subject>Mathematics</subject><subject>Median graph</subject><subject>Median problem</subject><subject>Metric Geometry</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApxy5dASJ23TShyYJmBIQ1zgHLmpy1J17ZSUCd6edkMc8cVW8v2W_DF2DSIGAdltEzc2hFgKKWMBsRBwwmYgChFJLZNTNhPjTyTGOmcXITQjAGmmZuz-hSqHXeCu49vDyD887jaBY1fxYUPOc_tZErf9dtfSFx3I1nWEng9uS5fsrMY20NVvn7P3x4e35Spavz49LxfryCqdD5HWCgtR2SLNdJljam2iCkmpUCgLjbqqSlUiJYBpKWRNOVCW1wBQlgiFRDVnN8e9G2zNzrst-m_TozOrxdpMb0KliS5StYeRlUfW-j4ET_VfAISZfJnGTL7M5MsIMKOOMXR3DNF4xd6RN8E66uwoxZMdTNW7_-I_UcJytA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Bénéteau, Laurine</creator><creator>Chalopin, Jérémie</creator><creator>Chepoi, Victor</creator><creator>Vaxès, Yann</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2988-8969</orcidid></search><sort><creationdate>202206</creationdate><title>Medians in median graphs and their cube complexes in linear time</title><author>Bénéteau, Laurine ; Chalopin, Jérémie ; Chepoi, Victor ; Vaxès, Yann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-773a90dc9567b8a5cc4392e503a297a7ddb3bae41a5b02fe81e68f111bba192a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAT cube complex</topic><topic>Combinatorics</topic><topic>Computational Geometry</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Discrete Mathematics</topic><topic>Event structures</topic><topic>LexBFS</topic><topic>Linear time algorithm</topic><topic>Mathematics</topic><topic>Median graph</topic><topic>Median problem</topic><topic>Metric Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bénéteau, Laurine</creatorcontrib><creatorcontrib>Chalopin, Jérémie</creatorcontrib><creatorcontrib>Chepoi, Victor</creatorcontrib><creatorcontrib>Vaxès, Yann</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bénéteau, Laurine</au><au>Chalopin, Jérémie</au><au>Chepoi, Victor</au><au>Vaxès, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medians in median graphs and their cube complexes in linear time</atitle><jtitle>Journal of computer and system sciences</jtitle><date>2022-06</date><risdate>2022</risdate><volume>126</volume><spage>80</spage><epage>105</epage><pages>80-105</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs. We also present a linear time algorithm to compute medians in the associated ℓ1-cube complexes. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ-classes) via Lexicographic Breadth First Search (LexBFS). We show that any LexBFS ordering of the vertices of a median graph satisfies the following fellow traveler property: the parents of any two adjacent vertices are also adjacent. Using the fast computation of the Θ-classes, we also compute the Wiener index (total distance) in linear time and the distance matrix in optimal quadratic time.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2022.01.001</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-2988-8969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 2022-06, Vol.126, p.80-105
issn 0022-0000
1090-2724
language eng
recordid cdi_hal_primary_oai_HAL_hal_03547953v1
source Access via ScienceDirect (Elsevier)
subjects CAT cube complex
Combinatorics
Computational Geometry
Computer Science
Data Structures and Algorithms
Discrete Mathematics
Event structures
LexBFS
Linear time algorithm
Mathematics
Median graph
Median problem
Metric Geometry
title Medians in median graphs and their cube complexes in linear time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medians%20in%20median%20graphs%20and%20their%20cube%20complexes%20in%20linear%20time&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=B%C3%A9n%C3%A9teau,%20Laurine&rft.date=2022-06&rft.volume=126&rft.spage=80&rft.epage=105&rft.pages=80-105&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2022.01.001&rft_dat=%3Celsevier_hal_p%3ES0022000022000034%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022000022000034&rfr_iscdi=true