Differentially optimized cell-free buffer enables robust expression from unprotected linear DNA in exonuclease-deficient extracts
The use of linear DNA templates in cell-free systems promises to accelerate the prototyping and engineering of synthetic gene circuits. A key challenge is that linear templates are rapidly degraded by exonucleases present in cell extracts. Current approaches tackle the problem by adding exonuclease...
Gespeichert in:
Veröffentlicht in: | ACS synthetic biology 2021-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | ACS synthetic biology |
container_volume | |
creator | Angelo Cardoso Batista Levrier, Antoine Soudier, Paul Voyvodic, Peter L Achmedov, Tatjana Reif-Trauttmansdorff, Tristan Devisch, Angelique Martin Cohen Gonsaud Jean-Loup Faulon Beisel, Chase Bonnet, Jerome Kushwaha, Manish |
description | The use of linear DNA templates in cell-free systems promises to accelerate the prototyping and engineering of synthetic gene circuits. A key challenge is that linear templates are rapidly degraded by exonucleases present in cell extracts. Current approaches tackle the problem by adding exonuclease inhibitors and DNA-binding proteins to protect the linear DNA, requiring additional time- and resource-intensive steps. Here, we delete the recBCD exonuclease gene cluster from the Escherichia coli BL21 genome. We show that the resulting cell-free systems, with buffers optimized specifically for linear DNA, enable near-plasmid levels of expression from σ70 promoters in linear DNA templates without employing additional protection strategies. When using linear or plasmid DNA templates at the buffer calibration step, the optimal potassium glutamate concentrations obtained when using linear DNA were consistently lower than those obtained when using plasmid DNA for the same extract. We demonstrate the robustness of the exonuclease deficient extracts across seven different batches and a wide range of experimental conditions across two different laboratories. Finally, we illustrate the use of the ΔrecBCD extracts for two applications: toehold switch characterization and enzyme screening. Our work provides a simple, efficient, and cost-effective solution for using linear DNA templates in cell-free systems and highlights the importance of specifically tailoring buffer composition for the final experimental setup. Our data also suggest that similar exonuclease deletion strategies can be applied to other species suitable for cell-free synthetic biology. Competing Interest Statement The authors have declared no competing interest. |
doi_str_mv | 10.1101/2021.09.07.459228 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03545788v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604996817</sourcerecordid><originalsourceid>FETCH-LOGICAL-b1388-1f83ec75485da401d117bf146f92f408c44c880b814fde3376b7403a2c661d2a3</originalsourceid><addsrcrecordid>eNo9kM1uFDEQhC1ERKIkD8DNEhc4zNL-GdtzXCWBIK3gAmfL42kLR97xYs9ESW55c7xaxKlbpa-6VUXIewYbxoB95sDZBoYN6I3sB87NG3LB1cA7w6F_23amWNeDEufkutYHAOCDYkLLd-Rc9CCklMMFeb2NIWDBeYkupWeaD0vcxxecqMeUulAQ6bgeEYqzGxNWWvK41oXi06FgrTHPNJS8p-t8KHlBvzRvijO6Qm-_b2mcG5nn1Sd0FbsJQ_SxvWvqUpxf6hU5Cy5VvP43L8mvL3c_b-673Y-v3262u25kwpiOBSPQ616afnIS2MSYHgOTKgw8SDBeSm8MjIbJMKEQWo1agnDcK8Um7sQl-XS6-9sleyhx78qzzS7a--3OHjUQvey1MY-ssR9P7BhzeYqP__lj6RYGC9qeSm_ohxPa0v9ZsS72Ia9lbkksVyCHQRmmxV_Dt4Bv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604996817</pqid></control><display><type>article</type><title>Differentially optimized cell-free buffer enables robust expression from unprotected linear DNA in exonuclease-deficient extracts</title><source>ACS Publications</source><creator>Angelo Cardoso Batista ; Levrier, Antoine ; Soudier, Paul ; Voyvodic, Peter L ; Achmedov, Tatjana ; Reif-Trauttmansdorff, Tristan ; Devisch, Angelique ; Martin Cohen Gonsaud ; Jean-Loup Faulon ; Beisel, Chase ; Bonnet, Jerome ; Kushwaha, Manish</creator><creatorcontrib>Angelo Cardoso Batista ; Levrier, Antoine ; Soudier, Paul ; Voyvodic, Peter L ; Achmedov, Tatjana ; Reif-Trauttmansdorff, Tristan ; Devisch, Angelique ; Martin Cohen Gonsaud ; Jean-Loup Faulon ; Beisel, Chase ; Bonnet, Jerome ; Kushwaha, Manish</creatorcontrib><description>The use of linear DNA templates in cell-free systems promises to accelerate the prototyping and engineering of synthetic gene circuits. A key challenge is that linear templates are rapidly degraded by exonucleases present in cell extracts. Current approaches tackle the problem by adding exonuclease inhibitors and DNA-binding proteins to protect the linear DNA, requiring additional time- and resource-intensive steps. Here, we delete the recBCD exonuclease gene cluster from the Escherichia coli BL21 genome. We show that the resulting cell-free systems, with buffers optimized specifically for linear DNA, enable near-plasmid levels of expression from σ70 promoters in linear DNA templates without employing additional protection strategies. When using linear or plasmid DNA templates at the buffer calibration step, the optimal potassium glutamate concentrations obtained when using linear DNA were consistently lower than those obtained when using plasmid DNA for the same extract. We demonstrate the robustness of the exonuclease deficient extracts across seven different batches and a wide range of experimental conditions across two different laboratories. Finally, we illustrate the use of the ΔrecBCD extracts for two applications: toehold switch characterization and enzyme screening. Our work provides a simple, efficient, and cost-effective solution for using linear DNA templates in cell-free systems and highlights the importance of specifically tailoring buffer composition for the final experimental setup. Our data also suggest that similar exonuclease deletion strategies can be applied to other species suitable for cell-free synthetic biology. Competing Interest Statement The authors have declared no competing interest.</description><edition>1.2</edition><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2692-8205</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1101/2021.09.07.459228</identifier><identifier>PMID: 35034449</identifier><language>eng</language><publisher>Cold Spring Harbor: Cold Spring Harbor Laboratory Press</publisher><subject>Deoxyribonucleic acid ; DNA ; DNA-binding protein ; Engineering Sciences ; Exonuclease ; Genomes ; Life Sciences ; Synthetic Biology</subject><ispartof>ACS synthetic biology, 2021-12</ispartof><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021, Posted by Cold Spring Harbor Laboratory</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8420-9359 ; 0000-0003-4274-2953 ; 0000-0003-0161-8462 ; 0000-0002-8850-3272 ; 0000-0001-6578-8837 ; 0000-0003-0650-9943 ; 0000-0002-6226-2917 ; 0000-0002-0150-9912 ; 0000-0002-7840-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03545788$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelo Cardoso Batista</creatorcontrib><creatorcontrib>Levrier, Antoine</creatorcontrib><creatorcontrib>Soudier, Paul</creatorcontrib><creatorcontrib>Voyvodic, Peter L</creatorcontrib><creatorcontrib>Achmedov, Tatjana</creatorcontrib><creatorcontrib>Reif-Trauttmansdorff, Tristan</creatorcontrib><creatorcontrib>Devisch, Angelique</creatorcontrib><creatorcontrib>Martin Cohen Gonsaud</creatorcontrib><creatorcontrib>Jean-Loup Faulon</creatorcontrib><creatorcontrib>Beisel, Chase</creatorcontrib><creatorcontrib>Bonnet, Jerome</creatorcontrib><creatorcontrib>Kushwaha, Manish</creatorcontrib><title>Differentially optimized cell-free buffer enables robust expression from unprotected linear DNA in exonuclease-deficient extracts</title><title>ACS synthetic biology</title><description>The use of linear DNA templates in cell-free systems promises to accelerate the prototyping and engineering of synthetic gene circuits. A key challenge is that linear templates are rapidly degraded by exonucleases present in cell extracts. Current approaches tackle the problem by adding exonuclease inhibitors and DNA-binding proteins to protect the linear DNA, requiring additional time- and resource-intensive steps. Here, we delete the recBCD exonuclease gene cluster from the Escherichia coli BL21 genome. We show that the resulting cell-free systems, with buffers optimized specifically for linear DNA, enable near-plasmid levels of expression from σ70 promoters in linear DNA templates without employing additional protection strategies. When using linear or plasmid DNA templates at the buffer calibration step, the optimal potassium glutamate concentrations obtained when using linear DNA were consistently lower than those obtained when using plasmid DNA for the same extract. We demonstrate the robustness of the exonuclease deficient extracts across seven different batches and a wide range of experimental conditions across two different laboratories. Finally, we illustrate the use of the ΔrecBCD extracts for two applications: toehold switch characterization and enzyme screening. Our work provides a simple, efficient, and cost-effective solution for using linear DNA templates in cell-free systems and highlights the importance of specifically tailoring buffer composition for the final experimental setup. Our data also suggest that similar exonuclease deletion strategies can be applied to other species suitable for cell-free synthetic biology. Competing Interest Statement The authors have declared no competing interest.</description><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-binding protein</subject><subject>Engineering Sciences</subject><subject>Exonuclease</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Synthetic Biology</subject><issn>2161-5063</issn><issn>2692-8205</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AAFGM</sourceid><sourceid>ABUWG</sourceid><sourceid>ADZZV</sourceid><sourceid>AFKRA</sourceid><sourceid>AFOLM</sourceid><sourceid>AGAJT</sourceid><sourceid>AQTIP</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>PQCXX</sourceid><recordid>eNo9kM1uFDEQhC1ERKIkD8DNEhc4zNL-GdtzXCWBIK3gAmfL42kLR97xYs9ESW55c7xaxKlbpa-6VUXIewYbxoB95sDZBoYN6I3sB87NG3LB1cA7w6F_23amWNeDEufkutYHAOCDYkLLd-Rc9CCklMMFeb2NIWDBeYkupWeaD0vcxxecqMeUulAQ6bgeEYqzGxNWWvK41oXi06FgrTHPNJS8p-t8KHlBvzRvijO6Qm-_b2mcG5nn1Sd0FbsJQ_SxvWvqUpxf6hU5Cy5VvP43L8mvL3c_b-673Y-v3262u25kwpiOBSPQ616afnIS2MSYHgOTKgw8SDBeSm8MjIbJMKEQWo1agnDcK8Um7sQl-XS6-9sleyhx78qzzS7a--3OHjUQvey1MY-ssR9P7BhzeYqP__lj6RYGC9qeSm_ohxPa0v9ZsS72Ia9lbkksVyCHQRmmxV_Dt4Bv</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Angelo Cardoso Batista</creator><creator>Levrier, Antoine</creator><creator>Soudier, Paul</creator><creator>Voyvodic, Peter L</creator><creator>Achmedov, Tatjana</creator><creator>Reif-Trauttmansdorff, Tristan</creator><creator>Devisch, Angelique</creator><creator>Martin Cohen Gonsaud</creator><creator>Jean-Loup Faulon</creator><creator>Beisel, Chase</creator><creator>Bonnet, Jerome</creator><creator>Kushwaha, Manish</creator><general>Cold Spring Harbor Laboratory Press</general><general>Cold Spring Harbor Laboratory</general><general>American Chemical Society</general><scope>8FE</scope><scope>8FH</scope><scope>AAFGM</scope><scope>AAMXL</scope><scope>ABOIG</scope><scope>ABUWG</scope><scope>ADZZV</scope><scope>AFKRA</scope><scope>AFLLJ</scope><scope>AFOLM</scope><scope>AGAJT</scope><scope>AQTIP</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQCXX</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>FX.</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8420-9359</orcidid><orcidid>https://orcid.org/0000-0003-4274-2953</orcidid><orcidid>https://orcid.org/0000-0003-0161-8462</orcidid><orcidid>https://orcid.org/0000-0002-8850-3272</orcidid><orcidid>https://orcid.org/0000-0001-6578-8837</orcidid><orcidid>https://orcid.org/0000-0003-0650-9943</orcidid><orcidid>https://orcid.org/0000-0002-6226-2917</orcidid><orcidid>https://orcid.org/0000-0002-0150-9912</orcidid><orcidid>https://orcid.org/0000-0002-7840-5417</orcidid></search><sort><creationdate>20211201</creationdate><title>Differentially optimized cell-free buffer enables robust expression from unprotected linear DNA in exonuclease-deficient extracts</title><author>Angelo Cardoso Batista ; Levrier, Antoine ; Soudier, Paul ; Voyvodic, Peter L ; Achmedov, Tatjana ; Reif-Trauttmansdorff, Tristan ; Devisch, Angelique ; Martin Cohen Gonsaud ; Jean-Loup Faulon ; Beisel, Chase ; Bonnet, Jerome ; Kushwaha, Manish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b1388-1f83ec75485da401d117bf146f92f408c44c880b814fde3376b7403a2c661d2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-binding protein</topic><topic>Engineering Sciences</topic><topic>Exonuclease</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Synthetic Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelo Cardoso Batista</creatorcontrib><creatorcontrib>Levrier, Antoine</creatorcontrib><creatorcontrib>Soudier, Paul</creatorcontrib><creatorcontrib>Voyvodic, Peter L</creatorcontrib><creatorcontrib>Achmedov, Tatjana</creatorcontrib><creatorcontrib>Reif-Trauttmansdorff, Tristan</creatorcontrib><creatorcontrib>Devisch, Angelique</creatorcontrib><creatorcontrib>Martin Cohen Gonsaud</creatorcontrib><creatorcontrib>Jean-Loup Faulon</creatorcontrib><creatorcontrib>Beisel, Chase</creatorcontrib><creatorcontrib>Bonnet, Jerome</creatorcontrib><creatorcontrib>Kushwaha, Manish</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>bioRxiv</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelo Cardoso Batista</au><au>Levrier, Antoine</au><au>Soudier, Paul</au><au>Voyvodic, Peter L</au><au>Achmedov, Tatjana</au><au>Reif-Trauttmansdorff, Tristan</au><au>Devisch, Angelique</au><au>Martin Cohen Gonsaud</au><au>Jean-Loup Faulon</au><au>Beisel, Chase</au><au>Bonnet, Jerome</au><au>Kushwaha, Manish</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Differentially optimized cell-free buffer enables robust expression from unprotected linear DNA in exonuclease-deficient extracts</atitle><jtitle>ACS synthetic biology</jtitle><date>2021-12-01</date><risdate>2021</risdate><issn>2161-5063</issn><eissn>2692-8205</eissn><eissn>2161-5063</eissn><abstract>The use of linear DNA templates in cell-free systems promises to accelerate the prototyping and engineering of synthetic gene circuits. A key challenge is that linear templates are rapidly degraded by exonucleases present in cell extracts. Current approaches tackle the problem by adding exonuclease inhibitors and DNA-binding proteins to protect the linear DNA, requiring additional time- and resource-intensive steps. Here, we delete the recBCD exonuclease gene cluster from the Escherichia coli BL21 genome. We show that the resulting cell-free systems, with buffers optimized specifically for linear DNA, enable near-plasmid levels of expression from σ70 promoters in linear DNA templates without employing additional protection strategies. When using linear or plasmid DNA templates at the buffer calibration step, the optimal potassium glutamate concentrations obtained when using linear DNA were consistently lower than those obtained when using plasmid DNA for the same extract. We demonstrate the robustness of the exonuclease deficient extracts across seven different batches and a wide range of experimental conditions across two different laboratories. Finally, we illustrate the use of the ΔrecBCD extracts for two applications: toehold switch characterization and enzyme screening. Our work provides a simple, efficient, and cost-effective solution for using linear DNA templates in cell-free systems and highlights the importance of specifically tailoring buffer composition for the final experimental setup. Our data also suggest that similar exonuclease deletion strategies can be applied to other species suitable for cell-free synthetic biology. Competing Interest Statement The authors have declared no competing interest.</abstract><cop>Cold Spring Harbor</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>35034449</pmid><doi>10.1101/2021.09.07.459228</doi><tpages>29</tpages><edition>1.2</edition><orcidid>https://orcid.org/0000-0002-8420-9359</orcidid><orcidid>https://orcid.org/0000-0003-4274-2953</orcidid><orcidid>https://orcid.org/0000-0003-0161-8462</orcidid><orcidid>https://orcid.org/0000-0002-8850-3272</orcidid><orcidid>https://orcid.org/0000-0001-6578-8837</orcidid><orcidid>https://orcid.org/0000-0003-0650-9943</orcidid><orcidid>https://orcid.org/0000-0002-6226-2917</orcidid><orcidid>https://orcid.org/0000-0002-0150-9912</orcidid><orcidid>https://orcid.org/0000-0002-7840-5417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-5063 |
ispartof | ACS synthetic biology, 2021-12 |
issn | 2161-5063 2692-8205 2161-5063 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03545788v1 |
source | ACS Publications |
subjects | Deoxyribonucleic acid DNA DNA-binding protein Engineering Sciences Exonuclease Genomes Life Sciences Synthetic Biology |
title | Differentially optimized cell-free buffer enables robust expression from unprotected linear DNA in exonuclease-deficient extracts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Differentially%20optimized%20cell-free%20buffer%20enables%20robust%20expression%20from%20unprotected%20linear%20DNA%20in%20exonuclease-deficient%20extracts&rft.jtitle=ACS%20synthetic%20biology&rft.au=Angelo%20Cardoso%20Batista&rft.date=2021-12-01&rft.issn=2161-5063&rft.eissn=2692-8205&rft_id=info:doi/10.1101/2021.09.07.459228&rft_dat=%3Cproquest_hal_p%3E2604996817%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604996817&rft_id=info:pmid/35034449&rfr_iscdi=true |