Bias-Dependent Intrinsic RF Thermal Noise Modeling and Characterization of Single-Layer Graphene FETs

In this article, the bias dependence of intrinsic channel thermal noise of single-layer (SL) graphene field-effect transistors (GFETs) is thoroughly investigated by experimental observations and compact modeling. The findings indicate an increase of the specific noise as drain current increases, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2021-11, Vol.69 (11), p.4639-4646
Hauptverfasser: Mavredakis, Nikolaos, Pacheco-Sanchez, Anibal, Sakalas, Paulius, Wei, Wei, Pallecchi, Emiliano, Happy, Henri, Jimenez, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4646
container_issue 11
container_start_page 4639
container_title IEEE transactions on microwave theory and techniques
container_volume 69
creator Mavredakis, Nikolaos
Pacheco-Sanchez, Anibal
Sakalas, Paulius
Wei, Wei
Pallecchi, Emiliano
Happy, Henri
Jimenez, David
description In this article, the bias dependence of intrinsic channel thermal noise of single-layer (SL) graphene field-effect transistors (GFETs) is thoroughly investigated by experimental observations and compact modeling. The findings indicate an increase of the specific noise as drain current increases, whereas a saturation trend is observed at very high carrier density regime. Besides, short-channel effects, such as velocity saturation (VS) also result in an increment of noise at higher electric fields. The main goal of this work is to propose a physics-based compact model that accounts for and accurately predicts the above experimental observations in short-channel GFETs. In contrast to long-channel MOSFET-based models adopted previously to describe thermal noise in graphene devices without considering the degenerate nature of graphene, in this work, a model for short-channel GFETs embracing the 2-D material's underlying physics and including a bias dependence is presented. The implemented model is validated with deembedded high-frequency data from two short-channel devices at quasi-static (QS) region of operation. The model precisely describes the experimental data for a wide range of low-to-high drain current values without the need of any fitting parameter. Moreover, the consideration of the degenerate nature of graphene reveals a significant decrease of noise in comparison with the nondegenerate case and the model accurately captures this behavior. This work can also be of utmost significance from the circuit designers' aspect since noise excess factor, a very important figure of merit for RF circuits implementation, is defined and characterized for the first time in graphene transistors.
doi_str_mv 10.1109/TMTT.2021.3105672
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03542154v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9527065</ieee_id><sourcerecordid>2593682700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-63a5774e6bca1f9af7cc29115f61bd8992ad4648e1ab4e687ca25b66beb2d363</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEuXxAxAXS5w4pNhObMdHKI9WKiBB7tYm2VCj4BQ7RYJfj6siTqud_Wa0GkLOOJtyzsxV9VhVU8EEn-acSaXFHplwKXVmlGb7ZMIYLzNTlOyQHMX4ntZCsnJC8MZBzG5xjb5FP9KFH4Pz0TX05Z5WKwwf0NOnwUWkj0OLvfNvFHxLZysI0IwY3A-MbvB06OhrOvaYLeEbA30IsF6hR3p_V8UTctBBH_H0bx6TKsmzebZ8fljMrpdZk2s2ZioHqXWBqm6AdwY63TTCcC47xeu2NEZAW6iiRA51okrdgJC1UjXWos1Vfkwud7Er6O06uA8I33YAZ-fXS7vVWC4LwWXxxRN7sWPXYfjcYBzt-7AJPn1nhTS5KoVmLFF8RzVhiDFg9x_Lmd0Wb7fF223x9q_45DnfeRwi_vNGpkAl819c6X4S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593682700</pqid></control><display><type>article</type><title>Bias-Dependent Intrinsic RF Thermal Noise Modeling and Characterization of Single-Layer Graphene FETs</title><source>IEEE Electronic Library (IEL)</source><creator>Mavredakis, Nikolaos ; Pacheco-Sanchez, Anibal ; Sakalas, Paulius ; Wei, Wei ; Pallecchi, Emiliano ; Happy, Henri ; Jimenez, David</creator><creatorcontrib>Mavredakis, Nikolaos ; Pacheco-Sanchez, Anibal ; Sakalas, Paulius ; Wei, Wei ; Pallecchi, Emiliano ; Happy, Henri ; Jimenez, David</creatorcontrib><description>In this article, the bias dependence of intrinsic channel thermal noise of single-layer (SL) graphene field-effect transistors (GFETs) is thoroughly investigated by experimental observations and compact modeling. The findings indicate an increase of the specific noise as drain current increases, whereas a saturation trend is observed at very high carrier density regime. Besides, short-channel effects, such as velocity saturation (VS) also result in an increment of noise at higher electric fields. The main goal of this work is to propose a physics-based compact model that accounts for and accurately predicts the above experimental observations in short-channel GFETs. In contrast to long-channel MOSFET-based models adopted previously to describe thermal noise in graphene devices without considering the degenerate nature of graphene, in this work, a model for short-channel GFETs embracing the 2-D material's underlying physics and including a bias dependence is presented. The implemented model is validated with deembedded high-frequency data from two short-channel devices at quasi-static (QS) region of operation. The model precisely describes the experimental data for a wide range of low-to-high drain current values without the need of any fitting parameter. Moreover, the consideration of the degenerate nature of graphene reveals a significant decrease of noise in comparison with the nondegenerate case and the model accurately captures this behavior. This work can also be of utmost significance from the circuit designers' aspect since noise excess factor, a very important figure of merit for RF circuits implementation, is defined and characterized for the first time in graphene transistors.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2021.3105672</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bias ; Bias dependence ; Carrier density ; Circuit design ; compact model ; Electric fields ; Electronic devices ; Electronics ; Engineering Sciences ; excess noise factor ; Field effect transistors ; Figure of merit ; Graphene ; graphene transistor (GFET) ; intrinsic channel ; Logic gates ; Modelling ; MOSFETs ; Noise ; Radio frequency ; Resistance ; Saturation ; Semiconductor device measurement ; Semiconductor device modeling ; Semiconductor devices ; Thermal noise ; Transistors ; Two dimensional materials ; Two dimensional models ; velocity saturation (VS)</subject><ispartof>IEEE transactions on microwave theory and techniques, 2021-11, Vol.69 (11), p.4639-4646</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-63a5774e6bca1f9af7cc29115f61bd8992ad4648e1ab4e687ca25b66beb2d363</citedby><cites>FETCH-LOGICAL-c370t-63a5774e6bca1f9af7cc29115f61bd8992ad4648e1ab4e687ca25b66beb2d363</cites><orcidid>0000-0002-0897-0605 ; 0000-0003-2065-8080 ; 0000-0002-8148-198X ; 0000-0002-8682-7935 ; 0000-0003-3630-9416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9527065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9527065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03542154$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mavredakis, Nikolaos</creatorcontrib><creatorcontrib>Pacheco-Sanchez, Anibal</creatorcontrib><creatorcontrib>Sakalas, Paulius</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Pallecchi, Emiliano</creatorcontrib><creatorcontrib>Happy, Henri</creatorcontrib><creatorcontrib>Jimenez, David</creatorcontrib><title>Bias-Dependent Intrinsic RF Thermal Noise Modeling and Characterization of Single-Layer Graphene FETs</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>In this article, the bias dependence of intrinsic channel thermal noise of single-layer (SL) graphene field-effect transistors (GFETs) is thoroughly investigated by experimental observations and compact modeling. The findings indicate an increase of the specific noise as drain current increases, whereas a saturation trend is observed at very high carrier density regime. Besides, short-channel effects, such as velocity saturation (VS) also result in an increment of noise at higher electric fields. The main goal of this work is to propose a physics-based compact model that accounts for and accurately predicts the above experimental observations in short-channel GFETs. In contrast to long-channel MOSFET-based models adopted previously to describe thermal noise in graphene devices without considering the degenerate nature of graphene, in this work, a model for short-channel GFETs embracing the 2-D material's underlying physics and including a bias dependence is presented. The implemented model is validated with deembedded high-frequency data from two short-channel devices at quasi-static (QS) region of operation. The model precisely describes the experimental data for a wide range of low-to-high drain current values without the need of any fitting parameter. Moreover, the consideration of the degenerate nature of graphene reveals a significant decrease of noise in comparison with the nondegenerate case and the model accurately captures this behavior. This work can also be of utmost significance from the circuit designers' aspect since noise excess factor, a very important figure of merit for RF circuits implementation, is defined and characterized for the first time in graphene transistors.</description><subject>Bias</subject><subject>Bias dependence</subject><subject>Carrier density</subject><subject>Circuit design</subject><subject>compact model</subject><subject>Electric fields</subject><subject>Electronic devices</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>excess noise factor</subject><subject>Field effect transistors</subject><subject>Figure of merit</subject><subject>Graphene</subject><subject>graphene transistor (GFET)</subject><subject>intrinsic channel</subject><subject>Logic gates</subject><subject>Modelling</subject><subject>MOSFETs</subject><subject>Noise</subject><subject>Radio frequency</subject><subject>Resistance</subject><subject>Saturation</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Thermal noise</subject><subject>Transistors</subject><subject>Two dimensional materials</subject><subject>Two dimensional models</subject><subject>velocity saturation (VS)</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEuXxAxAXS5w4pNhObMdHKI9WKiBB7tYm2VCj4BQ7RYJfj6siTqud_Wa0GkLOOJtyzsxV9VhVU8EEn-acSaXFHplwKXVmlGb7ZMIYLzNTlOyQHMX4ntZCsnJC8MZBzG5xjb5FP9KFH4Pz0TX05Z5WKwwf0NOnwUWkj0OLvfNvFHxLZysI0IwY3A-MbvB06OhrOvaYLeEbA30IsF6hR3p_V8UTctBBH_H0bx6TKsmzebZ8fljMrpdZk2s2ZioHqXWBqm6AdwY63TTCcC47xeu2NEZAW6iiRA51okrdgJC1UjXWos1Vfkwud7Er6O06uA8I33YAZ-fXS7vVWC4LwWXxxRN7sWPXYfjcYBzt-7AJPn1nhTS5KoVmLFF8RzVhiDFg9x_Lmd0Wb7fF223x9q_45DnfeRwi_vNGpkAl819c6X4S</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Mavredakis, Nikolaos</creator><creator>Pacheco-Sanchez, Anibal</creator><creator>Sakalas, Paulius</creator><creator>Wei, Wei</creator><creator>Pallecchi, Emiliano</creator><creator>Happy, Henri</creator><creator>Jimenez, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0897-0605</orcidid><orcidid>https://orcid.org/0000-0003-2065-8080</orcidid><orcidid>https://orcid.org/0000-0002-8148-198X</orcidid><orcidid>https://orcid.org/0000-0002-8682-7935</orcidid><orcidid>https://orcid.org/0000-0003-3630-9416</orcidid></search><sort><creationdate>20211101</creationdate><title>Bias-Dependent Intrinsic RF Thermal Noise Modeling and Characterization of Single-Layer Graphene FETs</title><author>Mavredakis, Nikolaos ; Pacheco-Sanchez, Anibal ; Sakalas, Paulius ; Wei, Wei ; Pallecchi, Emiliano ; Happy, Henri ; Jimenez, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-63a5774e6bca1f9af7cc29115f61bd8992ad4648e1ab4e687ca25b66beb2d363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bias</topic><topic>Bias dependence</topic><topic>Carrier density</topic><topic>Circuit design</topic><topic>compact model</topic><topic>Electric fields</topic><topic>Electronic devices</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>excess noise factor</topic><topic>Field effect transistors</topic><topic>Figure of merit</topic><topic>Graphene</topic><topic>graphene transistor (GFET)</topic><topic>intrinsic channel</topic><topic>Logic gates</topic><topic>Modelling</topic><topic>MOSFETs</topic><topic>Noise</topic><topic>Radio frequency</topic><topic>Resistance</topic><topic>Saturation</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Thermal noise</topic><topic>Transistors</topic><topic>Two dimensional materials</topic><topic>Two dimensional models</topic><topic>velocity saturation (VS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mavredakis, Nikolaos</creatorcontrib><creatorcontrib>Pacheco-Sanchez, Anibal</creatorcontrib><creatorcontrib>Sakalas, Paulius</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Pallecchi, Emiliano</creatorcontrib><creatorcontrib>Happy, Henri</creatorcontrib><creatorcontrib>Jimenez, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mavredakis, Nikolaos</au><au>Pacheco-Sanchez, Anibal</au><au>Sakalas, Paulius</au><au>Wei, Wei</au><au>Pallecchi, Emiliano</au><au>Happy, Henri</au><au>Jimenez, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bias-Dependent Intrinsic RF Thermal Noise Modeling and Characterization of Single-Layer Graphene FETs</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>69</volume><issue>11</issue><spage>4639</spage><epage>4646</epage><pages>4639-4646</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>In this article, the bias dependence of intrinsic channel thermal noise of single-layer (SL) graphene field-effect transistors (GFETs) is thoroughly investigated by experimental observations and compact modeling. The findings indicate an increase of the specific noise as drain current increases, whereas a saturation trend is observed at very high carrier density regime. Besides, short-channel effects, such as velocity saturation (VS) also result in an increment of noise at higher electric fields. The main goal of this work is to propose a physics-based compact model that accounts for and accurately predicts the above experimental observations in short-channel GFETs. In contrast to long-channel MOSFET-based models adopted previously to describe thermal noise in graphene devices without considering the degenerate nature of graphene, in this work, a model for short-channel GFETs embracing the 2-D material's underlying physics and including a bias dependence is presented. The implemented model is validated with deembedded high-frequency data from two short-channel devices at quasi-static (QS) region of operation. The model precisely describes the experimental data for a wide range of low-to-high drain current values without the need of any fitting parameter. Moreover, the consideration of the degenerate nature of graphene reveals a significant decrease of noise in comparison with the nondegenerate case and the model accurately captures this behavior. This work can also be of utmost significance from the circuit designers' aspect since noise excess factor, a very important figure of merit for RF circuits implementation, is defined and characterized for the first time in graphene transistors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2021.3105672</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0897-0605</orcidid><orcidid>https://orcid.org/0000-0003-2065-8080</orcidid><orcidid>https://orcid.org/0000-0002-8148-198X</orcidid><orcidid>https://orcid.org/0000-0002-8682-7935</orcidid><orcidid>https://orcid.org/0000-0003-3630-9416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2021-11, Vol.69 (11), p.4639-4646
issn 0018-9480
1557-9670
language eng
recordid cdi_hal_primary_oai_HAL_hal_03542154v1
source IEEE Electronic Library (IEL)
subjects Bias
Bias dependence
Carrier density
Circuit design
compact model
Electric fields
Electronic devices
Electronics
Engineering Sciences
excess noise factor
Field effect transistors
Figure of merit
Graphene
graphene transistor (GFET)
intrinsic channel
Logic gates
Modelling
MOSFETs
Noise
Radio frequency
Resistance
Saturation
Semiconductor device measurement
Semiconductor device modeling
Semiconductor devices
Thermal noise
Transistors
Two dimensional materials
Two dimensional models
velocity saturation (VS)
title Bias-Dependent Intrinsic RF Thermal Noise Modeling and Characterization of Single-Layer Graphene FETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bias-Dependent%20Intrinsic%20RF%20Thermal%20Noise%20Modeling%20and%20Characterization%20of%20Single-Layer%20Graphene%20FETs&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Mavredakis,%20Nikolaos&rft.date=2021-11-01&rft.volume=69&rft.issue=11&rft.spage=4639&rft.epage=4646&rft.pages=4639-4646&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2021.3105672&rft_dat=%3Cproquest_RIE%3E2593682700%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593682700&rft_id=info:pmid/&rft_ieee_id=9527065&rfr_iscdi=true