On the steady state of continuous-time stochastic opinion dynamics with power-law confidence

This paper introduces a non-linear and continuous-time opinion dynamics model with additive noise and state-dependent interaction rates between agents. The model features interaction rates which are proportional to a negative power of the opinion distances. We establish a non-local partial different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2021-09, Vol.58 (3), p.746-772
Hauptverfasser: Baccelli, François, Vishwanath, Sriram, Oh Woo, Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue 3
container_start_page 746
container_title Journal of applied probability
container_volume 58
creator Baccelli, François
Vishwanath, Sriram
Oh Woo, Jae
description This paper introduces a non-linear and continuous-time opinion dynamics model with additive noise and state-dependent interaction rates between agents. The model features interaction rates which are proportional to a negative power of the opinion distances. We establish a non-local partial differential equation for the distribution of opinion distances and use Mellin transforms to provide an explicit formula for the stationary solution of the latter, when it exists. Our approach leads to new qualitative and quantitative results on this type of dynamics. To the best of our knowledge these Mellin transform results are the first quantitative results on the equilibria of opinion dynamics with distance-dependent interaction rates. The closed-form expressions for this class of dynamics are obtained for the two-agent case. However, the results can be used in mean-field models featuring several agents whose interaction rates depend on the empirical average of their opinions. The technique also applies to linear dynamics, namely with a constant interaction rate, on an interaction graph.
doi_str_mv 10.1017/jpr.2020.113
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03542120v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jpr_2020_113</cupid><jstor_id>48656634</jstor_id><sourcerecordid>48656634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-b8f8eded26c0af211f25bdaac16e4af244f5761a4c3f49b68a93b093ccd749f33</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4MoOKc3r0LBk2BnfjbtcQx1wmAXvQkhTROXsTU1yRz7703pmBcveeS9T74vfAC4RXCCIOJP685PMMTphsgZGCHKWV5Ajs_BCEKM8iqdl-AqhDWEiLKKj8Dnss3iSmchatkcUpFRZ85kyrXRtju3C3m0237u1EqGaFXmOtta12bNoZVbq0K2t3GVdW6vfb6R-_6psY1ulb4GF0Zugr451jH4eHl-n83zxfL1bTZd5IogFvO6NKVudIMLBaXBCBnM6kZKhQpNU4NSw3iBJFXE0KouSlmRGlZEqYbTyhAyBg9D7kpuROftVvqDcNKK-XQh-h4kjGKE4Q9K7P3Adt5973SIYu12vk3fE5hxXPKKlTxRjwOlvAvBa3OKRVD0rkVyLXrXIrlO-N2Ar5Mnf2JpWbCiIDTNJ8c4ua29bb7039Z_A38Bq72Ldw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572879587</pqid></control><display><type>article</type><title>On the steady state of continuous-time stochastic opinion dynamics with power-law confidence</title><source>Cambridge Journals</source><creator>Baccelli, François ; Vishwanath, Sriram ; Oh Woo, Jae</creator><creatorcontrib>Baccelli, François ; Vishwanath, Sriram ; Oh Woo, Jae</creatorcontrib><description>This paper introduces a non-linear and continuous-time opinion dynamics model with additive noise and state-dependent interaction rates between agents. The model features interaction rates which are proportional to a negative power of the opinion distances. We establish a non-local partial differential equation for the distribution of opinion distances and use Mellin transforms to provide an explicit formula for the stationary solution of the latter, when it exists. Our approach leads to new qualitative and quantitative results on this type of dynamics. To the best of our knowledge these Mellin transform results are the first quantitative results on the equilibria of opinion dynamics with distance-dependent interaction rates. The closed-form expressions for this class of dynamics are obtained for the two-agent case. However, the results can be used in mean-field models featuring several agents whose interaction rates depend on the empirical average of their opinions. The technique also applies to linear dynamics, namely with a constant interaction rate, on an interaction graph.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/jpr.2020.113</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computer Science ; Euclidean space ; Geometry ; Mathematics ; Mellin transforms ; Networking and Internet Architecture ; Original Article ; Partial differential equations ; Power ; Probability ; Reagents ; Research Papers</subject><ispartof>Journal of applied probability, 2021-09, Vol.58 (3), p.746-772</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust</rights><rights>The Author(s), 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-b8f8eded26c0af211f25bdaac16e4af244f5761a4c3f49b68a93b093ccd749f33</cites><orcidid>0000-0002-9326-8422 ; 0000-0001-6799-6189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900220001138/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27922,27923,55626</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03542120$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baccelli, François</creatorcontrib><creatorcontrib>Vishwanath, Sriram</creatorcontrib><creatorcontrib>Oh Woo, Jae</creatorcontrib><title>On the steady state of continuous-time stochastic opinion dynamics with power-law confidence</title><title>Journal of applied probability</title><addtitle>J. Appl. Probab</addtitle><description>This paper introduces a non-linear and continuous-time opinion dynamics model with additive noise and state-dependent interaction rates between agents. The model features interaction rates which are proportional to a negative power of the opinion distances. We establish a non-local partial differential equation for the distribution of opinion distances and use Mellin transforms to provide an explicit formula for the stationary solution of the latter, when it exists. Our approach leads to new qualitative and quantitative results on this type of dynamics. To the best of our knowledge these Mellin transform results are the first quantitative results on the equilibria of opinion dynamics with distance-dependent interaction rates. The closed-form expressions for this class of dynamics are obtained for the two-agent case. However, the results can be used in mean-field models featuring several agents whose interaction rates depend on the empirical average of their opinions. The technique also applies to linear dynamics, namely with a constant interaction rate, on an interaction graph.</description><subject>Computer Science</subject><subject>Euclidean space</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mellin transforms</subject><subject>Networking and Internet Architecture</subject><subject>Original Article</subject><subject>Partial differential equations</subject><subject>Power</subject><subject>Probability</subject><subject>Reagents</subject><subject>Research Papers</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM9LwzAUx4MoOKc3r0LBk2BnfjbtcQx1wmAXvQkhTROXsTU1yRz7703pmBcveeS9T74vfAC4RXCCIOJP685PMMTphsgZGCHKWV5Ajs_BCEKM8iqdl-AqhDWEiLKKj8Dnss3iSmchatkcUpFRZ85kyrXRtju3C3m0237u1EqGaFXmOtta12bNoZVbq0K2t3GVdW6vfb6R-_6psY1ulb4GF0Zugr451jH4eHl-n83zxfL1bTZd5IogFvO6NKVudIMLBaXBCBnM6kZKhQpNU4NSw3iBJFXE0KouSlmRGlZEqYbTyhAyBg9D7kpuROftVvqDcNKK-XQh-h4kjGKE4Q9K7P3Adt5973SIYu12vk3fE5hxXPKKlTxRjwOlvAvBa3OKRVD0rkVyLXrXIrlO-N2Ar5Mnf2JpWbCiIDTNJ8c4ua29bb7039Z_A38Bq72Ldw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Baccelli, François</creator><creator>Vishwanath, Sriram</creator><creator>Oh Woo, Jae</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><general>Cambridge University press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9326-8422</orcidid><orcidid>https://orcid.org/0000-0001-6799-6189</orcidid></search><sort><creationdate>20210901</creationdate><title>On the steady state of continuous-time stochastic opinion dynamics with power-law confidence</title><author>Baccelli, François ; Vishwanath, Sriram ; Oh Woo, Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-b8f8eded26c0af211f25bdaac16e4af244f5761a4c3f49b68a93b093ccd749f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Euclidean space</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mellin transforms</topic><topic>Networking and Internet Architecture</topic><topic>Original Article</topic><topic>Partial differential equations</topic><topic>Power</topic><topic>Probability</topic><topic>Reagents</topic><topic>Research Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baccelli, François</creatorcontrib><creatorcontrib>Vishwanath, Sriram</creatorcontrib><creatorcontrib>Oh Woo, Jae</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baccelli, François</au><au>Vishwanath, Sriram</au><au>Oh Woo, Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the steady state of continuous-time stochastic opinion dynamics with power-law confidence</atitle><jtitle>Journal of applied probability</jtitle><addtitle>J. Appl. Probab</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>58</volume><issue>3</issue><spage>746</spage><epage>772</epage><pages>746-772</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>This paper introduces a non-linear and continuous-time opinion dynamics model with additive noise and state-dependent interaction rates between agents. The model features interaction rates which are proportional to a negative power of the opinion distances. We establish a non-local partial differential equation for the distribution of opinion distances and use Mellin transforms to provide an explicit formula for the stationary solution of the latter, when it exists. Our approach leads to new qualitative and quantitative results on this type of dynamics. To the best of our knowledge these Mellin transform results are the first quantitative results on the equilibria of opinion dynamics with distance-dependent interaction rates. The closed-form expressions for this class of dynamics are obtained for the two-agent case. However, the results can be used in mean-field models featuring several agents whose interaction rates depend on the empirical average of their opinions. The technique also applies to linear dynamics, namely with a constant interaction rate, on an interaction graph.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jpr.2020.113</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-9326-8422</orcidid><orcidid>https://orcid.org/0000-0001-6799-6189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2021-09, Vol.58 (3), p.746-772
issn 0021-9002
1475-6072
language eng
recordid cdi_hal_primary_oai_HAL_hal_03542120v1
source Cambridge Journals
subjects Computer Science
Euclidean space
Geometry
Mathematics
Mellin transforms
Networking and Internet Architecture
Original Article
Partial differential equations
Power
Probability
Reagents
Research Papers
title On the steady state of continuous-time stochastic opinion dynamics with power-law confidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20steady%20state%20of%20continuous-time%20stochastic%20opinion%20dynamics%20with%20power-law%20confidence&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Baccelli,%20Fran%C3%A7ois&rft.date=2021-09-01&rft.volume=58&rft.issue=3&rft.spage=746&rft.epage=772&rft.pages=746-772&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/jpr.2020.113&rft_dat=%3Cjstor_hal_p%3E48656634%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572879587&rft_id=info:pmid/&rft_cupid=10_1017_jpr_2020_113&rft_jstor_id=48656634&rfr_iscdi=true