Plastoquinone homeostasis in plant acclimation to light intensity
Arabidopsis plants were grown from seeds at different photon flux densities (PFDs) of white light ranging from 65 to 800 µmol photons m −2 s −1 . Increasing PFD brought about a marked accumulation of plastoquinone (PQ) in leaves. However, the thylakoid photoactive PQ pool, estimated to about 700 pm...
Gespeichert in:
Veröffentlicht in: | Photosynthesis research 2022-04, Vol.152 (1), p.43-54 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Photosynthesis research |
container_volume | 152 |
creator | Ksas, Brigitte Alric, Jean Caffarri, Stefano Havaux, Michel |
description | Arabidopsis plants were grown from seeds at different photon flux densities (PFDs) of white light ranging from 65 to 800 µmol photons m
−2
s
−1
. Increasing PFD brought about a marked accumulation of plastoquinone (PQ) in leaves. However, the thylakoid photoactive PQ pool, estimated to about 700 pmol mg
−1
leaf dry weight, was independent of PFD; PQ accumulation in high light mostly occurred in the photochemically non-active pool (plastoglobules, chloroplast envelopes) which represented up to 75% of total PQ. The amounts of PSII reaction center (on a leaf dry weight basis) also were little affected by PFD during growth, leading to a constant PQ/PSII ratio at all PFDs. Boosting PQ biosynthesis by overexpression of a solanesyl diphosphate-synthesizing enzyme strongly enhanced the PQ levels, particularly at high PFDs. Again, this accumulation occurred exclusively in the non-photoactive PQ pool. Mutational suppression of the plastoglobular ABC1K1 kinase led to a selective reduction of the thylakoid PQ pool size to
ca
. 400 pmol mg
−1
in a large range of PFDs, which was associated with a restriction of the photosynthetic electron flow. Our results show that photosynthetic acclimation to light intensity does not involve modulation of the thylakoid PQ pool size or the amounts of PSII reaction centers. There appears to be a fixed amount of PQ molecules for optimal interaction with PSII and efficient photosynthesis, with the extra PQ molecules being stored outside the thylakoid membranes, implying a tight regulation of PQ distribution within the chloroplasts. |
doi_str_mv | 10.1007/s11120-021-00889-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03521179v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A703236359</galeid><sourcerecordid>A703236359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-22d589f9674014a0aa08214214f420108b2f79803a2b0f9bbf394a9c55658f6b3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1ERZfCC3BAkbjAIWXGjhP7uKqAIq1ED-VsOVl711ViL7G3Ut-e2aYUiQOyJY9mvhn945-xdwiXCNB9zojIoQaONYBSusYXbIWyE7WETr9kK8C2rZXU8py9zvkOiGpRvGLnQlKMQq3Y-ma0uaRfxxBTdNU-TS7lYnPIVYjVYbSxVHYYxjDZElKsSqrGsNsXqhYXcygPb9iZt2N2b5_eC_bz65fbq-t68-Pb96v1ph6aRpWa861U2uu2awAbC9aC4tjQ9Q0HBNVz32kFwvIevO57L3Rj9SBlK5Vve3HBPi1z93Y0h5kEzQ8m2WCu1xtzyoGQHLHT90jsx4U9zLSay8VMIQ9upHVcOmbDW1QSFe8UoR_-Qe_ScY60CVEtdgJFI4i6XKidHZ0J0acy24HO1k1hoJ_zgfLrDgQXrZCaGvjSMMwp59n5Z8kI5uSeWdwz5J55dM-cZL9_0nLsJ7d9bvljFwFiATKV4s7Nf8X-Z-xv9NahkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661731343</pqid></control><display><type>article</type><title>Plastoquinone homeostasis in plant acclimation to light intensity</title><source>MEDLINE</source><source>SpringerLink Journals (MCLS)</source><creator>Ksas, Brigitte ; Alric, Jean ; Caffarri, Stefano ; Havaux, Michel</creator><creatorcontrib>Ksas, Brigitte ; Alric, Jean ; Caffarri, Stefano ; Havaux, Michel</creatorcontrib><description>Arabidopsis plants were grown from seeds at different photon flux densities (PFDs) of white light ranging from 65 to 800 µmol photons m
−2
s
−1
. Increasing PFD brought about a marked accumulation of plastoquinone (PQ) in leaves. However, the thylakoid photoactive PQ pool, estimated to about 700 pmol mg
−1
leaf dry weight, was independent of PFD; PQ accumulation in high light mostly occurred in the photochemically non-active pool (plastoglobules, chloroplast envelopes) which represented up to 75% of total PQ. The amounts of PSII reaction center (on a leaf dry weight basis) also were little affected by PFD during growth, leading to a constant PQ/PSII ratio at all PFDs. Boosting PQ biosynthesis by overexpression of a solanesyl diphosphate-synthesizing enzyme strongly enhanced the PQ levels, particularly at high PFDs. Again, this accumulation occurred exclusively in the non-photoactive PQ pool. Mutational suppression of the plastoglobular ABC1K1 kinase led to a selective reduction of the thylakoid PQ pool size to
ca
. 400 pmol mg
−1
in a large range of PFDs, which was associated with a restriction of the photosynthetic electron flow. Our results show that photosynthetic acclimation to light intensity does not involve modulation of the thylakoid PQ pool size or the amounts of PSII reaction centers. There appears to be a fixed amount of PQ molecules for optimal interaction with PSII and efficient photosynthesis, with the extra PQ molecules being stored outside the thylakoid membranes, implying a tight regulation of PQ distribution within the chloroplasts.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-021-00889-1</identifier><identifier>PMID: 35000138</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acclimation ; Acclimatization ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Biochemistry ; Biomedical and Life Sciences ; Chloroplasts ; Dry weight ; Electron Transport ; Homeostasis ; Kinases ; Leaves ; Life Sciences ; Light ; Light intensity ; Original Article ; Oxidation-Reduction ; Photons ; Photosynthesis ; Photosynthesis - physiology ; Photosystem II ; Photosystem II Protein Complex - metabolism ; Physiological aspects ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Plastoquinone - metabolism ; Reaction centers ; Seeds ; Thylakoid membranes ; Thylakoids - metabolism</subject><ispartof>Photosynthesis research, 2022-04, Vol.152 (1), p.43-54</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-22d589f9674014a0aa08214214f420108b2f79803a2b0f9bbf394a9c55658f6b3</citedby><cites>FETCH-LOGICAL-c448t-22d589f9674014a0aa08214214f420108b2f79803a2b0f9bbf394a9c55658f6b3</cites><orcidid>0000-0002-6434-393X ; 0000-0002-4729-7679 ; 0000-0002-5369-3176 ; 0000-0003-3574-2234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-021-00889-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-021-00889-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35000138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03521179$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ksas, Brigitte</creatorcontrib><creatorcontrib>Alric, Jean</creatorcontrib><creatorcontrib>Caffarri, Stefano</creatorcontrib><creatorcontrib>Havaux, Michel</creatorcontrib><title>Plastoquinone homeostasis in plant acclimation to light intensity</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>Arabidopsis plants were grown from seeds at different photon flux densities (PFDs) of white light ranging from 65 to 800 µmol photons m
−2
s
−1
. Increasing PFD brought about a marked accumulation of plastoquinone (PQ) in leaves. However, the thylakoid photoactive PQ pool, estimated to about 700 pmol mg
−1
leaf dry weight, was independent of PFD; PQ accumulation in high light mostly occurred in the photochemically non-active pool (plastoglobules, chloroplast envelopes) which represented up to 75% of total PQ. The amounts of PSII reaction center (on a leaf dry weight basis) also were little affected by PFD during growth, leading to a constant PQ/PSII ratio at all PFDs. Boosting PQ biosynthesis by overexpression of a solanesyl diphosphate-synthesizing enzyme strongly enhanced the PQ levels, particularly at high PFDs. Again, this accumulation occurred exclusively in the non-photoactive PQ pool. Mutational suppression of the plastoglobular ABC1K1 kinase led to a selective reduction of the thylakoid PQ pool size to
ca
. 400 pmol mg
−1
in a large range of PFDs, which was associated with a restriction of the photosynthetic electron flow. Our results show that photosynthetic acclimation to light intensity does not involve modulation of the thylakoid PQ pool size or the amounts of PSII reaction centers. There appears to be a fixed amount of PQ molecules for optimal interaction with PSII and efficient photosynthesis, with the extra PQ molecules being stored outside the thylakoid membranes, implying a tight regulation of PQ distribution within the chloroplasts.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Chloroplasts</subject><subject>Dry weight</subject><subject>Electron Transport</subject><subject>Homeostasis</subject><subject>Kinases</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light intensity</subject><subject>Original Article</subject><subject>Oxidation-Reduction</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Physiological aspects</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plastoquinone - metabolism</subject><subject>Reaction centers</subject><subject>Seeds</subject><subject>Thylakoid membranes</subject><subject>Thylakoids - metabolism</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhi1ERZfCC3BAkbjAIWXGjhP7uKqAIq1ED-VsOVl711ViL7G3Ut-e2aYUiQOyJY9mvhn945-xdwiXCNB9zojIoQaONYBSusYXbIWyE7WETr9kK8C2rZXU8py9zvkOiGpRvGLnQlKMQq3Y-ma0uaRfxxBTdNU-TS7lYnPIVYjVYbSxVHYYxjDZElKsSqrGsNsXqhYXcygPb9iZt2N2b5_eC_bz65fbq-t68-Pb96v1ph6aRpWa861U2uu2awAbC9aC4tjQ9Q0HBNVz32kFwvIevO57L3Rj9SBlK5Vve3HBPi1z93Y0h5kEzQ8m2WCu1xtzyoGQHLHT90jsx4U9zLSay8VMIQ9upHVcOmbDW1QSFe8UoR_-Qe_ScY60CVEtdgJFI4i6XKidHZ0J0acy24HO1k1hoJ_zgfLrDgQXrZCaGvjSMMwp59n5Z8kI5uSeWdwz5J55dM-cZL9_0nLsJ7d9bvljFwFiATKV4s7Nf8X-Z-xv9NahkA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ksas, Brigitte</creator><creator>Alric, Jean</creator><creator>Caffarri, Stefano</creator><creator>Havaux, Michel</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6434-393X</orcidid><orcidid>https://orcid.org/0000-0002-4729-7679</orcidid><orcidid>https://orcid.org/0000-0002-5369-3176</orcidid><orcidid>https://orcid.org/0000-0003-3574-2234</orcidid></search><sort><creationdate>20220401</creationdate><title>Plastoquinone homeostasis in plant acclimation to light intensity</title><author>Ksas, Brigitte ; Alric, Jean ; Caffarri, Stefano ; Havaux, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-22d589f9674014a0aa08214214f420108b2f79803a2b0f9bbf394a9c55658f6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Chloroplasts</topic><topic>Dry weight</topic><topic>Electron Transport</topic><topic>Homeostasis</topic><topic>Kinases</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light intensity</topic><topic>Original Article</topic><topic>Oxidation-Reduction</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Physiological aspects</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plastoquinone - metabolism</topic><topic>Reaction centers</topic><topic>Seeds</topic><topic>Thylakoid membranes</topic><topic>Thylakoids - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ksas, Brigitte</creatorcontrib><creatorcontrib>Alric, Jean</creatorcontrib><creatorcontrib>Caffarri, Stefano</creatorcontrib><creatorcontrib>Havaux, Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ksas, Brigitte</au><au>Alric, Jean</au><au>Caffarri, Stefano</au><au>Havaux, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastoquinone homeostasis in plant acclimation to light intensity</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>152</volume><issue>1</issue><spage>43</spage><epage>54</epage><pages>43-54</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>Arabidopsis plants were grown from seeds at different photon flux densities (PFDs) of white light ranging from 65 to 800 µmol photons m
−2
s
−1
. Increasing PFD brought about a marked accumulation of plastoquinone (PQ) in leaves. However, the thylakoid photoactive PQ pool, estimated to about 700 pmol mg
−1
leaf dry weight, was independent of PFD; PQ accumulation in high light mostly occurred in the photochemically non-active pool (plastoglobules, chloroplast envelopes) which represented up to 75% of total PQ. The amounts of PSII reaction center (on a leaf dry weight basis) also were little affected by PFD during growth, leading to a constant PQ/PSII ratio at all PFDs. Boosting PQ biosynthesis by overexpression of a solanesyl diphosphate-synthesizing enzyme strongly enhanced the PQ levels, particularly at high PFDs. Again, this accumulation occurred exclusively in the non-photoactive PQ pool. Mutational suppression of the plastoglobular ABC1K1 kinase led to a selective reduction of the thylakoid PQ pool size to
ca
. 400 pmol mg
−1
in a large range of PFDs, which was associated with a restriction of the photosynthetic electron flow. Our results show that photosynthetic acclimation to light intensity does not involve modulation of the thylakoid PQ pool size or the amounts of PSII reaction centers. There appears to be a fixed amount of PQ molecules for optimal interaction with PSII and efficient photosynthesis, with the extra PQ molecules being stored outside the thylakoid membranes, implying a tight regulation of PQ distribution within the chloroplasts.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35000138</pmid><doi>10.1007/s11120-021-00889-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6434-393X</orcidid><orcidid>https://orcid.org/0000-0002-4729-7679</orcidid><orcidid>https://orcid.org/0000-0002-5369-3176</orcidid><orcidid>https://orcid.org/0000-0003-3574-2234</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-8595 |
ispartof | Photosynthesis research, 2022-04, Vol.152 (1), p.43-54 |
issn | 0166-8595 1573-5079 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03521179v1 |
source | MEDLINE; SpringerLink Journals (MCLS) |
subjects | Acclimation Acclimatization Arabidopsis - metabolism Arabidopsis thaliana Biochemistry Biomedical and Life Sciences Chloroplasts Dry weight Electron Transport Homeostasis Kinases Leaves Life Sciences Light Light intensity Original Article Oxidation-Reduction Photons Photosynthesis Photosynthesis - physiology Photosystem II Photosystem II Protein Complex - metabolism Physiological aspects Plant Genetics and Genomics Plant Physiology Plant Sciences Plastoquinone - metabolism Reaction centers Seeds Thylakoid membranes Thylakoids - metabolism |
title | Plastoquinone homeostasis in plant acclimation to light intensity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastoquinone%20homeostasis%20in%20plant%20acclimation%20to%20light%20intensity&rft.jtitle=Photosynthesis%20research&rft.au=Ksas,%20Brigitte&rft.date=2022-04-01&rft.volume=152&rft.issue=1&rft.spage=43&rft.epage=54&rft.pages=43-54&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-021-00889-1&rft_dat=%3Cgale_hal_p%3EA703236359%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661731343&rft_id=info:pmid/35000138&rft_galeid=A703236359&rfr_iscdi=true |