Atomistic study of the fcc→bcc transformation in a binary system: Insights from the Quasi-particle Approach

[Display omitted] In this work, the Quasi-particle Approach (QA) is applied to qualitatively reproduce the underlying mechanisms of the displacive fcc (γ) → bcc (α) transformation. At the microstructural scale, we demonstrate that the QA is able to predict the growth of a bcc nucleus in a fcc matrix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2022-03, Vol.226, p.117599, Article 117599
Hauptverfasser: Demange, G., Lavrskyi, M., Chen, K., Chen, X., Wang, Z.D., Patte, R., Zapolsky, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117599
container_title Acta materialia
container_volume 226
creator Demange, G.
Lavrskyi, M.
Chen, K.
Chen, X.
Wang, Z.D.
Patte, R.
Zapolsky, H.
description [Display omitted] In this work, the Quasi-particle Approach (QA) is applied to qualitatively reproduce the underlying mechanisms of the displacive fcc (γ) → bcc (α) transformation. At the microstructural scale, we demonstrate that the QA is able to predict the growth of a bcc nucleus in a fcc matrix, and the eventual formation of an internally twinned structure consisting in two variants with Kurdjumov-Sachs orientation relationship. At the atomic level, the defect structure of twinning boundaries and fcc/bcc interfaces is identified, and the main mechanism for the propagation of the fcc/bcc interface is analyzed. In detail, it is confirmed that twin boundaries are propagated by the glide of pairs of partial twin dislocations, while the propagation of fcc screw dislocations along coherent terrace edges is the pivotal vector of the fcc/bcc transformation. The simulation results are compared qualitatively with our TEM and HRTEM observations of Fe-rich bcc twinned particle embedded in the fcc Cu-rich matrix in the Cu-Fe-Co system.
doi_str_mv 10.1016/j.actamat.2021.117599
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03517339v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645421009770</els_id><sourcerecordid>oai_HAL_hal_03517339v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-1fc099b63c0e4a4ff33371ec73cf4e4b0bd59544924fe14dc179295cc31faec43</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhosoOKePIOTWi9akSVbjjZShbjAQQa9DeprYjLUpSTbYC_gAPqJPYmeHt16dw-H8H-d8SXJNcEYwmd2uMwVRtSpmOc5JRkjBhThJJuSuoGnOOD0despFOmOcnScXIawxJnnB8CRpy-haG6IFFOK23iNnUGw0MgDfn18VAIpedcE4P_Ct65DtkEKV7ZTfo7APUbf3aNkF-9HEgIx37W_8dauCTXvlB_BGo7LvvVPQXCZnRm2CvjrWafL-9Pg2X6Srl-flvFylkBc0psQAFqKaUcCaKWYMpbQgGgoKhmlW4armgjMmcmY0YTWQQuSCA1BilAZGp8nNyG3URvbetsO10ikrF-VKHmaYclJQKnZk2OXjLngXgtfmL0CwPPiVa3n0Kw9-5eh3yD2MOT08srPaywBWd6Br6zVEWTv7D-EHMY-IjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomistic study of the fcc→bcc transformation in a binary system: Insights from the Quasi-particle Approach</title><source>Elsevier ScienceDirect Journals</source><creator>Demange, G. ; Lavrskyi, M. ; Chen, K. ; Chen, X. ; Wang, Z.D. ; Patte, R. ; Zapolsky, H.</creator><creatorcontrib>Demange, G. ; Lavrskyi, M. ; Chen, K. ; Chen, X. ; Wang, Z.D. ; Patte, R. ; Zapolsky, H.</creatorcontrib><description>[Display omitted] In this work, the Quasi-particle Approach (QA) is applied to qualitatively reproduce the underlying mechanisms of the displacive fcc (γ) → bcc (α) transformation. At the microstructural scale, we demonstrate that the QA is able to predict the growth of a bcc nucleus in a fcc matrix, and the eventual formation of an internally twinned structure consisting in two variants with Kurdjumov-Sachs orientation relationship. At the atomic level, the defect structure of twinning boundaries and fcc/bcc interfaces is identified, and the main mechanism for the propagation of the fcc/bcc interface is analyzed. In detail, it is confirmed that twin boundaries are propagated by the glide of pairs of partial twin dislocations, while the propagation of fcc screw dislocations along coherent terrace edges is the pivotal vector of the fcc/bcc transformation. The simulation results are compared qualitatively with our TEM and HRTEM observations of Fe-rich bcc twinned particle embedded in the fcc Cu-rich matrix in the Cu-Fe-Co system.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2021.117599</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Binary system ; Condensed Matter ; Fcc/bcc interface ; HRTEM ; Large scale simulation ; Martensitic transformation ; Modellng ; Phase-field crystal ; Physics ; Quasi-particles approach ; Structural transition ; Twinning</subject><ispartof>Acta materialia, 2022-03, Vol.226, p.117599, Article 117599</ispartof><rights>2021 Acta Materialia Inc.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-1fc099b63c0e4a4ff33371ec73cf4e4b0bd59544924fe14dc179295cc31faec43</citedby><cites>FETCH-LOGICAL-c273t-1fc099b63c0e4a4ff33371ec73cf4e4b0bd59544924fe14dc179295cc31faec43</cites><orcidid>0000-0002-9201-2812 ; 0000-0002-8274-2483 ; 0000-0002-1062-5181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645421009770$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03517339$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Demange, G.</creatorcontrib><creatorcontrib>Lavrskyi, M.</creatorcontrib><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Wang, Z.D.</creatorcontrib><creatorcontrib>Patte, R.</creatorcontrib><creatorcontrib>Zapolsky, H.</creatorcontrib><title>Atomistic study of the fcc→bcc transformation in a binary system: Insights from the Quasi-particle Approach</title><title>Acta materialia</title><description>[Display omitted] In this work, the Quasi-particle Approach (QA) is applied to qualitatively reproduce the underlying mechanisms of the displacive fcc (γ) → bcc (α) transformation. At the microstructural scale, we demonstrate that the QA is able to predict the growth of a bcc nucleus in a fcc matrix, and the eventual formation of an internally twinned structure consisting in two variants with Kurdjumov-Sachs orientation relationship. At the atomic level, the defect structure of twinning boundaries and fcc/bcc interfaces is identified, and the main mechanism for the propagation of the fcc/bcc interface is analyzed. In detail, it is confirmed that twin boundaries are propagated by the glide of pairs of partial twin dislocations, while the propagation of fcc screw dislocations along coherent terrace edges is the pivotal vector of the fcc/bcc transformation. The simulation results are compared qualitatively with our TEM and HRTEM observations of Fe-rich bcc twinned particle embedded in the fcc Cu-rich matrix in the Cu-Fe-Co system.</description><subject>Binary system</subject><subject>Condensed Matter</subject><subject>Fcc/bcc interface</subject><subject>HRTEM</subject><subject>Large scale simulation</subject><subject>Martensitic transformation</subject><subject>Modellng</subject><subject>Phase-field crystal</subject><subject>Physics</subject><subject>Quasi-particles approach</subject><subject>Structural transition</subject><subject>Twinning</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhosoOKePIOTWi9akSVbjjZShbjAQQa9DeprYjLUpSTbYC_gAPqJPYmeHt16dw-H8H-d8SXJNcEYwmd2uMwVRtSpmOc5JRkjBhThJJuSuoGnOOD0despFOmOcnScXIawxJnnB8CRpy-haG6IFFOK23iNnUGw0MgDfn18VAIpedcE4P_Ct65DtkEKV7ZTfo7APUbf3aNkF-9HEgIx37W_8dauCTXvlB_BGo7LvvVPQXCZnRm2CvjrWafL-9Pg2X6Srl-flvFylkBc0psQAFqKaUcCaKWYMpbQgGgoKhmlW4armgjMmcmY0YTWQQuSCA1BilAZGp8nNyG3URvbetsO10ikrF-VKHmaYclJQKnZk2OXjLngXgtfmL0CwPPiVa3n0Kw9-5eh3yD2MOT08srPaywBWd6Br6zVEWTv7D-EHMY-IjQ</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Demange, G.</creator><creator>Lavrskyi, M.</creator><creator>Chen, K.</creator><creator>Chen, X.</creator><creator>Wang, Z.D.</creator><creator>Patte, R.</creator><creator>Zapolsky, H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9201-2812</orcidid><orcidid>https://orcid.org/0000-0002-8274-2483</orcidid><orcidid>https://orcid.org/0000-0002-1062-5181</orcidid></search><sort><creationdate>202203</creationdate><title>Atomistic study of the fcc→bcc transformation in a binary system: Insights from the Quasi-particle Approach</title><author>Demange, G. ; Lavrskyi, M. ; Chen, K. ; Chen, X. ; Wang, Z.D. ; Patte, R. ; Zapolsky, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-1fc099b63c0e4a4ff33371ec73cf4e4b0bd59544924fe14dc179295cc31faec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary system</topic><topic>Condensed Matter</topic><topic>Fcc/bcc interface</topic><topic>HRTEM</topic><topic>Large scale simulation</topic><topic>Martensitic transformation</topic><topic>Modellng</topic><topic>Phase-field crystal</topic><topic>Physics</topic><topic>Quasi-particles approach</topic><topic>Structural transition</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demange, G.</creatorcontrib><creatorcontrib>Lavrskyi, M.</creatorcontrib><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Wang, Z.D.</creatorcontrib><creatorcontrib>Patte, R.</creatorcontrib><creatorcontrib>Zapolsky, H.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demange, G.</au><au>Lavrskyi, M.</au><au>Chen, K.</au><au>Chen, X.</au><au>Wang, Z.D.</au><au>Patte, R.</au><au>Zapolsky, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic study of the fcc→bcc transformation in a binary system: Insights from the Quasi-particle Approach</atitle><jtitle>Acta materialia</jtitle><date>2022-03</date><risdate>2022</risdate><volume>226</volume><spage>117599</spage><pages>117599-</pages><artnum>117599</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>[Display omitted] In this work, the Quasi-particle Approach (QA) is applied to qualitatively reproduce the underlying mechanisms of the displacive fcc (γ) → bcc (α) transformation. At the microstructural scale, we demonstrate that the QA is able to predict the growth of a bcc nucleus in a fcc matrix, and the eventual formation of an internally twinned structure consisting in two variants with Kurdjumov-Sachs orientation relationship. At the atomic level, the defect structure of twinning boundaries and fcc/bcc interfaces is identified, and the main mechanism for the propagation of the fcc/bcc interface is analyzed. In detail, it is confirmed that twin boundaries are propagated by the glide of pairs of partial twin dislocations, while the propagation of fcc screw dislocations along coherent terrace edges is the pivotal vector of the fcc/bcc transformation. The simulation results are compared qualitatively with our TEM and HRTEM observations of Fe-rich bcc twinned particle embedded in the fcc Cu-rich matrix in the Cu-Fe-Co system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2021.117599</doi><orcidid>https://orcid.org/0000-0002-9201-2812</orcidid><orcidid>https://orcid.org/0000-0002-8274-2483</orcidid><orcidid>https://orcid.org/0000-0002-1062-5181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2022-03, Vol.226, p.117599, Article 117599
issn 1359-6454
1873-2453
language eng
recordid cdi_hal_primary_oai_HAL_hal_03517339v1
source Elsevier ScienceDirect Journals
subjects Binary system
Condensed Matter
Fcc/bcc interface
HRTEM
Large scale simulation
Martensitic transformation
Modellng
Phase-field crystal
Physics
Quasi-particles approach
Structural transition
Twinning
title Atomistic study of the fcc→bcc transformation in a binary system: Insights from the Quasi-particle Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20study%20of%20the%20fcc%E2%86%92bcc%20transformation%20in%20a%20binary%20system:%20Insights%20from%20the%20Quasi-particle%20Approach&rft.jtitle=Acta%20materialia&rft.au=Demange,%20G.&rft.date=2022-03&rft.volume=226&rft.spage=117599&rft.pages=117599-&rft.artnum=117599&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2021.117599&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03517339v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645421009770&rfr_iscdi=true