Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor

Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-02, Vol.22 (4), p.3695-3703
Hauptverfasser: Sannier, Melodie, Janaqi, Stefan, Raducanu, Vinicius, Barysheva, Valeriya, Haddou, Hassan Ait, Pla, Simon, Dray, Gerard, Bardy, Benoit G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3703
container_issue 4
container_start_page 3695
container_title IEEE sensors journal
container_volume 22
creator Sannier, Melodie
Janaqi, Stefan
Raducanu, Vinicius
Barysheva, Valeriya
Haddou, Hassan Ait
Pla, Simon
Dray, Gerard
Bardy, Benoit G.
description Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - which was installed in a real occupied apartment in the city center of Montpellier in France. Our recognition method is based on the spatio-temporal statistical probability of body location corresponding to sensors' activation. The results led to the localization of the inhabitant in the two-dimensional floor space, and their tracking over a 24-hour period. More precisely, our technique enabled us to distinguish human-related behavior from the location of static objects. It also allowed us to successfully identify locomotor trajectories in a highly confined space, including those from two simultaneously walking individuals in different rooms. It allowed us to obtain valuable information on spatial behavior (trajectory, stationarity) but also on temporal behavior (occupancy time, walking duration). As this technique compensates for the already established low accuracy of capacitive sensors, our method offers innovative possibilities to study locomotor metrics at home using relatively inexpensive sensing technology.
doi_str_mv 10.1109/JSEN.2021.3139442
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03512496v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9665761</ieee_id><sourcerecordid>2627837117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-adbcadd8bb0f431ba80d19a2462dcb73a9e797def01be2ccbd266bc1b5c2b2913</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwpeOVFZ06SNs3lGJtThh9sonchSVPNbJeZdGP7965UdnUOh-d9OTxRdA1oAID4_dN8_DzACMOAAOGU4pOoB2maJ8BoftruBCWUsM_z6CKEJULAWcp60dt413ipG7v6ij9k9dPOhZdLoxvnrQmxbOKpq0088a6OZTySa6ltY7cmfvVuZ2vb7OO5WYU2OKmc85fRWSmrYK7-Zz96n4wXo2kye3l4HA1niaaQN4kslJZFkSuFSkpAyRwVwCWmGS60YkRywzgrTIlAGay1KnCWKQ0q1VhhDqQf3XW937ISa29r6ffCSSumw5lob4ikgCnPti1727Fr7343JjRi6TZ-dXhP4AyznDAAdqCgo7R3IXhTHmsBidayaC2L1rL4t3zI3HQZa4w58jzLUpYB-QOLvnjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627837117</pqid></control><display><type>article</type><title>Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor</title><source>IEEE Electronic Library (IEL)</source><creator>Sannier, Melodie ; Janaqi, Stefan ; Raducanu, Vinicius ; Barysheva, Valeriya ; Haddou, Hassan Ait ; Pla, Simon ; Dray, Gerard ; Bardy, Benoit G.</creator><creatorcontrib>Sannier, Melodie ; Janaqi, Stefan ; Raducanu, Vinicius ; Barysheva, Valeriya ; Haddou, Hassan Ait ; Pla, Simon ; Dray, Gerard ; Bardy, Benoit G.</creatorcontrib><description>Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - which was installed in a real occupied apartment in the city center of Montpellier in France. Our recognition method is based on the spatio-temporal statistical probability of body location corresponding to sensors' activation. The results led to the localization of the inhabitant in the two-dimensional floor space, and their tracking over a 24-hour period. More precisely, our technique enabled us to distinguish human-related behavior from the location of static objects. It also allowed us to successfully identify locomotor trajectories in a highly confined space, including those from two simultaneously walking individuals in different rooms. It allowed us to obtain valuable information on spatial behavior (trajectory, stationarity) but also on temporal behavior (occupancy time, walking duration). As this technique compensates for the already established low accuracy of capacitive sensors, our method offers innovative possibilities to study locomotor metrics at home using relatively inexpensive sensing technology.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3139442</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitive sensors ; City centres ; Confined spaces ; Engineering Sciences ; Floors ; Intelligent floor ; Intelligent sensors ; Legged locomotion ; locomotor trajectories ; modeling ; Occupancy ; SensFloor ; Sensor phenomena and characterization ; Sensors ; Static objects ; Statistical analysis ; Trajectory ; Walking ; walking at home</subject><ispartof>IEEE sensors journal, 2022-02, Vol.22 (4), p.3695-3703</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-adbcadd8bb0f431ba80d19a2462dcb73a9e797def01be2ccbd266bc1b5c2b2913</citedby><cites>FETCH-LOGICAL-c418t-adbcadd8bb0f431ba80d19a2462dcb73a9e797def01be2ccbd266bc1b5c2b2913</cites><orcidid>0000-0003-1525-5682 ; 0000-0001-9272-1734 ; 0000-0002-6536-3799 ; 0000-0002-1980-9948 ; 0000-0001-7117-5420 ; 0009-0009-0435-1549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9665761$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><backlink>$$Uhttps://imt-mines-ales.hal.science/hal-03512496$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sannier, Melodie</creatorcontrib><creatorcontrib>Janaqi, Stefan</creatorcontrib><creatorcontrib>Raducanu, Vinicius</creatorcontrib><creatorcontrib>Barysheva, Valeriya</creatorcontrib><creatorcontrib>Haddou, Hassan Ait</creatorcontrib><creatorcontrib>Pla, Simon</creatorcontrib><creatorcontrib>Dray, Gerard</creatorcontrib><creatorcontrib>Bardy, Benoit G.</creatorcontrib><title>Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - which was installed in a real occupied apartment in the city center of Montpellier in France. Our recognition method is based on the spatio-temporal statistical probability of body location corresponding to sensors' activation. The results led to the localization of the inhabitant in the two-dimensional floor space, and their tracking over a 24-hour period. More precisely, our technique enabled us to distinguish human-related behavior from the location of static objects. It also allowed us to successfully identify locomotor trajectories in a highly confined space, including those from two simultaneously walking individuals in different rooms. It allowed us to obtain valuable information on spatial behavior (trajectory, stationarity) but also on temporal behavior (occupancy time, walking duration). As this technique compensates for the already established low accuracy of capacitive sensors, our method offers innovative possibilities to study locomotor metrics at home using relatively inexpensive sensing technology.</description><subject>Capacitive sensors</subject><subject>City centres</subject><subject>Confined spaces</subject><subject>Engineering Sciences</subject><subject>Floors</subject><subject>Intelligent floor</subject><subject>Intelligent sensors</subject><subject>Legged locomotion</subject><subject>locomotor trajectories</subject><subject>modeling</subject><subject>Occupancy</subject><subject>SensFloor</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Static objects</subject><subject>Statistical analysis</subject><subject>Trajectory</subject><subject>Walking</subject><subject>walking at home</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOKc_QLwpeOVFZ06SNs3lGJtThh9sonchSVPNbJeZdGP7965UdnUOh-d9OTxRdA1oAID4_dN8_DzACMOAAOGU4pOoB2maJ8BoftruBCWUsM_z6CKEJULAWcp60dt413ipG7v6ij9k9dPOhZdLoxvnrQmxbOKpq0088a6OZTySa6ltY7cmfvVuZ2vb7OO5WYU2OKmc85fRWSmrYK7-Zz96n4wXo2kye3l4HA1niaaQN4kslJZFkSuFSkpAyRwVwCWmGS60YkRywzgrTIlAGay1KnCWKQ0q1VhhDqQf3XW937ISa29r6ffCSSumw5lob4ikgCnPti1727Fr7343JjRi6TZ-dXhP4AyznDAAdqCgo7R3IXhTHmsBidayaC2L1rL4t3zI3HQZa4w58jzLUpYB-QOLvnjw</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Sannier, Melodie</creator><creator>Janaqi, Stefan</creator><creator>Raducanu, Vinicius</creator><creator>Barysheva, Valeriya</creator><creator>Haddou, Hassan Ait</creator><creator>Pla, Simon</creator><creator>Dray, Gerard</creator><creator>Bardy, Benoit G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1525-5682</orcidid><orcidid>https://orcid.org/0000-0001-9272-1734</orcidid><orcidid>https://orcid.org/0000-0002-6536-3799</orcidid><orcidid>https://orcid.org/0000-0002-1980-9948</orcidid><orcidid>https://orcid.org/0000-0001-7117-5420</orcidid><orcidid>https://orcid.org/0009-0009-0435-1549</orcidid></search><sort><creationdate>20220215</creationdate><title>Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor</title><author>Sannier, Melodie ; Janaqi, Stefan ; Raducanu, Vinicius ; Barysheva, Valeriya ; Haddou, Hassan Ait ; Pla, Simon ; Dray, Gerard ; Bardy, Benoit G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-adbcadd8bb0f431ba80d19a2462dcb73a9e797def01be2ccbd266bc1b5c2b2913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitive sensors</topic><topic>City centres</topic><topic>Confined spaces</topic><topic>Engineering Sciences</topic><topic>Floors</topic><topic>Intelligent floor</topic><topic>Intelligent sensors</topic><topic>Legged locomotion</topic><topic>locomotor trajectories</topic><topic>modeling</topic><topic>Occupancy</topic><topic>SensFloor</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Static objects</topic><topic>Statistical analysis</topic><topic>Trajectory</topic><topic>Walking</topic><topic>walking at home</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sannier, Melodie</creatorcontrib><creatorcontrib>Janaqi, Stefan</creatorcontrib><creatorcontrib>Raducanu, Vinicius</creatorcontrib><creatorcontrib>Barysheva, Valeriya</creatorcontrib><creatorcontrib>Haddou, Hassan Ait</creatorcontrib><creatorcontrib>Pla, Simon</creatorcontrib><creatorcontrib>Dray, Gerard</creatorcontrib><creatorcontrib>Bardy, Benoit G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sannier, Melodie</au><au>Janaqi, Stefan</au><au>Raducanu, Vinicius</au><au>Barysheva, Valeriya</au><au>Haddou, Hassan Ait</au><au>Pla, Simon</au><au>Dray, Gerard</au><au>Bardy, Benoit G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-02-15</date><risdate>2022</risdate><volume>22</volume><issue>4</issue><spage>3695</spage><epage>3703</epage><pages>3695-3703</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - which was installed in a real occupied apartment in the city center of Montpellier in France. Our recognition method is based on the spatio-temporal statistical probability of body location corresponding to sensors' activation. The results led to the localization of the inhabitant in the two-dimensional floor space, and their tracking over a 24-hour period. More precisely, our technique enabled us to distinguish human-related behavior from the location of static objects. It also allowed us to successfully identify locomotor trajectories in a highly confined space, including those from two simultaneously walking individuals in different rooms. It allowed us to obtain valuable information on spatial behavior (trajectory, stationarity) but also on temporal behavior (occupancy time, walking duration). As this technique compensates for the already established low accuracy of capacitive sensors, our method offers innovative possibilities to study locomotor metrics at home using relatively inexpensive sensing technology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3139442</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1525-5682</orcidid><orcidid>https://orcid.org/0000-0001-9272-1734</orcidid><orcidid>https://orcid.org/0000-0002-6536-3799</orcidid><orcidid>https://orcid.org/0000-0002-1980-9948</orcidid><orcidid>https://orcid.org/0000-0001-7117-5420</orcidid><orcidid>https://orcid.org/0009-0009-0435-1549</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-02, Vol.22 (4), p.3695-3703
issn 1530-437X
1558-1748
language eng
recordid cdi_hal_primary_oai_HAL_hal_03512496v1
source IEEE Electronic Library (IEL)
subjects Capacitive sensors
City centres
Confined spaces
Engineering Sciences
Floors
Intelligent floor
Intelligent sensors
Legged locomotion
locomotor trajectories
modeling
Occupancy
SensFloor
Sensor phenomena and characterization
Sensors
Static objects
Statistical analysis
Trajectory
Walking
walking at home
title Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Walking%20Trajectories%20at%20Home%20From%20a%20Capacitive%20Proximity%20Sensing%20Floor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Sannier,%20Melodie&rft.date=2022-02-15&rft.volume=22&rft.issue=4&rft.spage=3695&rft.epage=3703&rft.pages=3695-3703&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3139442&rft_dat=%3Cproquest_hal_p%3E2627837117%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627837117&rft_id=info:pmid/&rft_ieee_id=9665761&rfr_iscdi=true