Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor
Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - whic...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-02, Vol.22 (4), p.3695-3703 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3703 |
---|---|
container_issue | 4 |
container_start_page | 3695 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Sannier, Melodie Janaqi, Stefan Raducanu, Vinicius Barysheva, Valeriya Haddou, Hassan Ait Pla, Simon Dray, Gerard Bardy, Benoit G. |
description | Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - which was installed in a real occupied apartment in the city center of Montpellier in France. Our recognition method is based on the spatio-temporal statistical probability of body location corresponding to sensors' activation. The results led to the localization of the inhabitant in the two-dimensional floor space, and their tracking over a 24-hour period. More precisely, our technique enabled us to distinguish human-related behavior from the location of static objects. It also allowed us to successfully identify locomotor trajectories in a highly confined space, including those from two simultaneously walking individuals in different rooms. It allowed us to obtain valuable information on spatial behavior (trajectory, stationarity) but also on temporal behavior (occupancy time, walking duration). As this technique compensates for the already established low accuracy of capacitive sensors, our method offers innovative possibilities to study locomotor metrics at home using relatively inexpensive sensing technology. |
doi_str_mv | 10.1109/JSEN.2021.3139442 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03512496v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9665761</ieee_id><sourcerecordid>2627837117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-adbcadd8bb0f431ba80d19a2462dcb73a9e797def01be2ccbd266bc1b5c2b2913</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwpeOVFZ06SNs3lGJtThh9sonchSVPNbJeZdGP7965UdnUOh-d9OTxRdA1oAID4_dN8_DzACMOAAOGU4pOoB2maJ8BoftruBCWUsM_z6CKEJULAWcp60dt413ipG7v6ij9k9dPOhZdLoxvnrQmxbOKpq0088a6OZTySa6ltY7cmfvVuZ2vb7OO5WYU2OKmc85fRWSmrYK7-Zz96n4wXo2kye3l4HA1niaaQN4kslJZFkSuFSkpAyRwVwCWmGS60YkRywzgrTIlAGay1KnCWKQ0q1VhhDqQf3XW937ISa29r6ffCSSumw5lob4ikgCnPti1727Fr7343JjRi6TZ-dXhP4AyznDAAdqCgo7R3IXhTHmsBidayaC2L1rL4t3zI3HQZa4w58jzLUpYB-QOLvnjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627837117</pqid></control><display><type>article</type><title>Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor</title><source>IEEE Electronic Library (IEL)</source><creator>Sannier, Melodie ; Janaqi, Stefan ; Raducanu, Vinicius ; Barysheva, Valeriya ; Haddou, Hassan Ait ; Pla, Simon ; Dray, Gerard ; Bardy, Benoit G.</creator><creatorcontrib>Sannier, Melodie ; Janaqi, Stefan ; Raducanu, Vinicius ; Barysheva, Valeriya ; Haddou, Hassan Ait ; Pla, Simon ; Dray, Gerard ; Bardy, Benoit G.</creatorcontrib><description>Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - which was installed in a real occupied apartment in the city center of Montpellier in France. Our recognition method is based on the spatio-temporal statistical probability of body location corresponding to sensors' activation. The results led to the localization of the inhabitant in the two-dimensional floor space, and their tracking over a 24-hour period. More precisely, our technique enabled us to distinguish human-related behavior from the location of static objects. It also allowed us to successfully identify locomotor trajectories in a highly confined space, including those from two simultaneously walking individuals in different rooms. It allowed us to obtain valuable information on spatial behavior (trajectory, stationarity) but also on temporal behavior (occupancy time, walking duration). As this technique compensates for the already established low accuracy of capacitive sensors, our method offers innovative possibilities to study locomotor metrics at home using relatively inexpensive sensing technology.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3139442</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitive sensors ; City centres ; Confined spaces ; Engineering Sciences ; Floors ; Intelligent floor ; Intelligent sensors ; Legged locomotion ; locomotor trajectories ; modeling ; Occupancy ; SensFloor ; Sensor phenomena and characterization ; Sensors ; Static objects ; Statistical analysis ; Trajectory ; Walking ; walking at home</subject><ispartof>IEEE sensors journal, 2022-02, Vol.22 (4), p.3695-3703</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-adbcadd8bb0f431ba80d19a2462dcb73a9e797def01be2ccbd266bc1b5c2b2913</citedby><cites>FETCH-LOGICAL-c418t-adbcadd8bb0f431ba80d19a2462dcb73a9e797def01be2ccbd266bc1b5c2b2913</cites><orcidid>0000-0003-1525-5682 ; 0000-0001-9272-1734 ; 0000-0002-6536-3799 ; 0000-0002-1980-9948 ; 0000-0001-7117-5420 ; 0009-0009-0435-1549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9665761$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><backlink>$$Uhttps://imt-mines-ales.hal.science/hal-03512496$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sannier, Melodie</creatorcontrib><creatorcontrib>Janaqi, Stefan</creatorcontrib><creatorcontrib>Raducanu, Vinicius</creatorcontrib><creatorcontrib>Barysheva, Valeriya</creatorcontrib><creatorcontrib>Haddou, Hassan Ait</creatorcontrib><creatorcontrib>Pla, Simon</creatorcontrib><creatorcontrib>Dray, Gerard</creatorcontrib><creatorcontrib>Bardy, Benoit G.</creatorcontrib><title>Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - which was installed in a real occupied apartment in the city center of Montpellier in France. Our recognition method is based on the spatio-temporal statistical probability of body location corresponding to sensors' activation. The results led to the localization of the inhabitant in the two-dimensional floor space, and their tracking over a 24-hour period. More precisely, our technique enabled us to distinguish human-related behavior from the location of static objects. It also allowed us to successfully identify locomotor trajectories in a highly confined space, including those from two simultaneously walking individuals in different rooms. It allowed us to obtain valuable information on spatial behavior (trajectory, stationarity) but also on temporal behavior (occupancy time, walking duration). As this technique compensates for the already established low accuracy of capacitive sensors, our method offers innovative possibilities to study locomotor metrics at home using relatively inexpensive sensing technology.</description><subject>Capacitive sensors</subject><subject>City centres</subject><subject>Confined spaces</subject><subject>Engineering Sciences</subject><subject>Floors</subject><subject>Intelligent floor</subject><subject>Intelligent sensors</subject><subject>Legged locomotion</subject><subject>locomotor trajectories</subject><subject>modeling</subject><subject>Occupancy</subject><subject>SensFloor</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Static objects</subject><subject>Statistical analysis</subject><subject>Trajectory</subject><subject>Walking</subject><subject>walking at home</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOKc_QLwpeOVFZ06SNs3lGJtThh9sonchSVPNbJeZdGP7965UdnUOh-d9OTxRdA1oAID4_dN8_DzACMOAAOGU4pOoB2maJ8BoftruBCWUsM_z6CKEJULAWcp60dt413ipG7v6ij9k9dPOhZdLoxvnrQmxbOKpq0088a6OZTySa6ltY7cmfvVuZ2vb7OO5WYU2OKmc85fRWSmrYK7-Zz96n4wXo2kye3l4HA1niaaQN4kslJZFkSuFSkpAyRwVwCWmGS60YkRywzgrTIlAGay1KnCWKQ0q1VhhDqQf3XW937ISa29r6ffCSSumw5lob4ikgCnPti1727Fr7343JjRi6TZ-dXhP4AyznDAAdqCgo7R3IXhTHmsBidayaC2L1rL4t3zI3HQZa4w58jzLUpYB-QOLvnjw</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Sannier, Melodie</creator><creator>Janaqi, Stefan</creator><creator>Raducanu, Vinicius</creator><creator>Barysheva, Valeriya</creator><creator>Haddou, Hassan Ait</creator><creator>Pla, Simon</creator><creator>Dray, Gerard</creator><creator>Bardy, Benoit G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1525-5682</orcidid><orcidid>https://orcid.org/0000-0001-9272-1734</orcidid><orcidid>https://orcid.org/0000-0002-6536-3799</orcidid><orcidid>https://orcid.org/0000-0002-1980-9948</orcidid><orcidid>https://orcid.org/0000-0001-7117-5420</orcidid><orcidid>https://orcid.org/0009-0009-0435-1549</orcidid></search><sort><creationdate>20220215</creationdate><title>Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor</title><author>Sannier, Melodie ; Janaqi, Stefan ; Raducanu, Vinicius ; Barysheva, Valeriya ; Haddou, Hassan Ait ; Pla, Simon ; Dray, Gerard ; Bardy, Benoit G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-adbcadd8bb0f431ba80d19a2462dcb73a9e797def01be2ccbd266bc1b5c2b2913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitive sensors</topic><topic>City centres</topic><topic>Confined spaces</topic><topic>Engineering Sciences</topic><topic>Floors</topic><topic>Intelligent floor</topic><topic>Intelligent sensors</topic><topic>Legged locomotion</topic><topic>locomotor trajectories</topic><topic>modeling</topic><topic>Occupancy</topic><topic>SensFloor</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Static objects</topic><topic>Statistical analysis</topic><topic>Trajectory</topic><topic>Walking</topic><topic>walking at home</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sannier, Melodie</creatorcontrib><creatorcontrib>Janaqi, Stefan</creatorcontrib><creatorcontrib>Raducanu, Vinicius</creatorcontrib><creatorcontrib>Barysheva, Valeriya</creatorcontrib><creatorcontrib>Haddou, Hassan Ait</creatorcontrib><creatorcontrib>Pla, Simon</creatorcontrib><creatorcontrib>Dray, Gerard</creatorcontrib><creatorcontrib>Bardy, Benoit G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sannier, Melodie</au><au>Janaqi, Stefan</au><au>Raducanu, Vinicius</au><au>Barysheva, Valeriya</au><au>Haddou, Hassan Ait</au><au>Pla, Simon</au><au>Dray, Gerard</au><au>Bardy, Benoit G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-02-15</date><risdate>2022</risdate><volume>22</volume><issue>4</issue><spage>3695</spage><epage>3703</epage><pages>3695-3703</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Walking at home can provide valuable information about locomotor efficiency, anticipation of daily hazards and general well-being. Here, we present a multidisciplinary method to reconstruct locomotor trajectories while walking at home with a capacitive proximity sensing device - the SensFloor - which was installed in a real occupied apartment in the city center of Montpellier in France. Our recognition method is based on the spatio-temporal statistical probability of body location corresponding to sensors' activation. The results led to the localization of the inhabitant in the two-dimensional floor space, and their tracking over a 24-hour period. More precisely, our technique enabled us to distinguish human-related behavior from the location of static objects. It also allowed us to successfully identify locomotor trajectories in a highly confined space, including those from two simultaneously walking individuals in different rooms. It allowed us to obtain valuable information on spatial behavior (trajectory, stationarity) but also on temporal behavior (occupancy time, walking duration). As this technique compensates for the already established low accuracy of capacitive sensors, our method offers innovative possibilities to study locomotor metrics at home using relatively inexpensive sensing technology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3139442</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1525-5682</orcidid><orcidid>https://orcid.org/0000-0001-9272-1734</orcidid><orcidid>https://orcid.org/0000-0002-6536-3799</orcidid><orcidid>https://orcid.org/0000-0002-1980-9948</orcidid><orcidid>https://orcid.org/0000-0001-7117-5420</orcidid><orcidid>https://orcid.org/0009-0009-0435-1549</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-02, Vol.22 (4), p.3695-3703 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03512496v1 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitive sensors City centres Confined spaces Engineering Sciences Floors Intelligent floor Intelligent sensors Legged locomotion locomotor trajectories modeling Occupancy SensFloor Sensor phenomena and characterization Sensors Static objects Statistical analysis Trajectory Walking walking at home |
title | Extracting Walking Trajectories at Home From a Capacitive Proximity Sensing Floor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Walking%20Trajectories%20at%20Home%20From%20a%20Capacitive%20Proximity%20Sensing%20Floor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Sannier,%20Melodie&rft.date=2022-02-15&rft.volume=22&rft.issue=4&rft.spage=3695&rft.epage=3703&rft.pages=3695-3703&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3139442&rft_dat=%3Cproquest_hal_p%3E2627837117%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627837117&rft_id=info:pmid/&rft_ieee_id=9665761&rfr_iscdi=true |