On the zeroth-order hamiltonian for CASPT2 calculations of spin crossover compounds

Complete active space self‐consistent field theory (CASSCF) calculations and subsequent second‐order perturbation theory treatment (CASPT2) are discussed in the evaluation of the spin‐states energy difference (ΔHelec) of a series of seven spin crossover (SCO) compounds. The reference values have bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2016-04, Vol.37 (10), p.947-953
Hauptverfasser: Vela, Sergi, Fumanal, Maria, Ribas-Ariño, Jordi, Robert, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 953
container_issue 10
container_start_page 947
container_title Journal of computational chemistry
container_volume 37
creator Vela, Sergi
Fumanal, Maria
Ribas-Ariño, Jordi
Robert, Vincent
description Complete active space self‐consistent field theory (CASSCF) calculations and subsequent second‐order perturbation theory treatment (CASPT2) are discussed in the evaluation of the spin‐states energy difference (ΔHelec) of a series of seven spin crossover (SCO) compounds. The reference values have been extracted from a combination of experimental measurements and DFT + U calculations, as discussed in a recent article (Vela et al., Phys Chem Chem Phys 2015, 17, 16306). It is definitely proven that the critical IPEA parameter used in CASPT2 calculations of ΔHelec, a key parameter in the design of SCO compounds, should be modified with respect to its default value of 0.25 a.u. and increased up to 0.50 a.u. The satisfactory agreement observed previously in the literature might result from an error cancellation originated in the default IPEA, which overestimates the stability of the HS state, and the erroneous atomic orbital basis set contraction of carbon atoms, which stabilizes the LS states. © 2015 Wiley Periodicals, Inc. The IPEA parameter used within CASPT2 is benchmarked for its use in the calculation of adiabatic energy gaps of Spin Crossover compounds. The importance of the recently discovered error in the ANO‐RCC basis set contraction for carbon atoms is also unveiled.
doi_str_mv 10.1002/jcc.24283
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03511540v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1775156170</sourcerecordid><originalsourceid>FETCH-LOGICAL-h4523-124f982915227920fcf717b5b4129eb78a7f019f71833490522eb98ab91ac9903</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EokvhwB9AlrjAIa3Hju34uIqgBa0o0KIiLpbjdRQvSby1k0L59Xi7ZQ-cZjT-3lhvHkIvgZwAIfR0Y-0JLWnFHqEFECUKVcnvj9GCgKJFJTgcoWcpbQghjIvyKTqiQiiumFigy4sRT53Df1wMU1eEuHYRd2bw_RRGb0bchojr5eXnK4qt6e3cm8mHMeHQ4rT1I7YxpBRus8qGYRvmcZ2eoyet6ZN78VCP0bf3767q82J1cfahXq6KruSUFUDLVlVUAadUKkpa20qQDW9KoMo1sjKyzQ7ysGKsVCRjrlGVaRQYqxRhx-jtfm9ner2NfjDxTgfj9flypXezbBeAl-QWMvtmz25juJldmvTgk3V9b0YX5qRBSg5cgNytff0fuglzHLOTHSWAVJLyTL16oOZmcOvD__9Om4HTPfDL9-7u8A5E7zLTOTN9n5n-WNf3TVYUe4VPk_t9UJj4UwvJJNfXn870j-vyK9DcfGF_AYazlHc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776108725</pqid></control><display><type>article</type><title>On the zeroth-order hamiltonian for CASPT2 calculations of spin crossover compounds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vela, Sergi ; Fumanal, Maria ; Ribas-Ariño, Jordi ; Robert, Vincent</creator><creatorcontrib>Vela, Sergi ; Fumanal, Maria ; Ribas-Ariño, Jordi ; Robert, Vincent</creatorcontrib><description>Complete active space self‐consistent field theory (CASSCF) calculations and subsequent second‐order perturbation theory treatment (CASPT2) are discussed in the evaluation of the spin‐states energy difference (ΔHelec) of a series of seven spin crossover (SCO) compounds. The reference values have been extracted from a combination of experimental measurements and DFT + U calculations, as discussed in a recent article (Vela et al., Phys Chem Chem Phys 2015, 17, 16306). It is definitely proven that the critical IPEA parameter used in CASPT2 calculations of ΔHelec, a key parameter in the design of SCO compounds, should be modified with respect to its default value of 0.25 a.u. and increased up to 0.50 a.u. The satisfactory agreement observed previously in the literature might result from an error cancellation originated in the default IPEA, which overestimates the stability of the HS state, and the erroneous atomic orbital basis set contraction of carbon atoms, which stabilizes the LS states. © 2015 Wiley Periodicals, Inc. The IPEA parameter used within CASPT2 is benchmarked for its use in the calculation of adiabatic energy gaps of Spin Crossover compounds. The importance of the recently discovered error in the ANO‐RCC basis set contraction for carbon atoms is also unveiled.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.24283</identifier><identifier>PMID: 26695936</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Atoms &amp; subatomic particles ; Chemical compounds ; Chemical Sciences ; computational chemistry ; molecular magnetism ; or physical chemistry ; Quantum physics ; spin crossover ; Theoretical and</subject><ispartof>Journal of computational chemistry, 2016-04, Vol.37 (10), p.947-953</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Apr 15, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4517-5213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.24283$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.24283$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26695936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03511540$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vela, Sergi</creatorcontrib><creatorcontrib>Fumanal, Maria</creatorcontrib><creatorcontrib>Ribas-Ariño, Jordi</creatorcontrib><creatorcontrib>Robert, Vincent</creatorcontrib><title>On the zeroth-order hamiltonian for CASPT2 calculations of spin crossover compounds</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>Complete active space self‐consistent field theory (CASSCF) calculations and subsequent second‐order perturbation theory treatment (CASPT2) are discussed in the evaluation of the spin‐states energy difference (ΔHelec) of a series of seven spin crossover (SCO) compounds. The reference values have been extracted from a combination of experimental measurements and DFT + U calculations, as discussed in a recent article (Vela et al., Phys Chem Chem Phys 2015, 17, 16306). It is definitely proven that the critical IPEA parameter used in CASPT2 calculations of ΔHelec, a key parameter in the design of SCO compounds, should be modified with respect to its default value of 0.25 a.u. and increased up to 0.50 a.u. The satisfactory agreement observed previously in the literature might result from an error cancellation originated in the default IPEA, which overestimates the stability of the HS state, and the erroneous atomic orbital basis set contraction of carbon atoms, which stabilizes the LS states. © 2015 Wiley Periodicals, Inc. The IPEA parameter used within CASPT2 is benchmarked for its use in the calculation of adiabatic energy gaps of Spin Crossover compounds. The importance of the recently discovered error in the ANO‐RCC basis set contraction for carbon atoms is also unveiled.</description><subject>Atoms &amp; subatomic particles</subject><subject>Chemical compounds</subject><subject>Chemical Sciences</subject><subject>computational chemistry</subject><subject>molecular magnetism</subject><subject>or physical chemistry</subject><subject>Quantum physics</subject><subject>spin crossover</subject><subject>Theoretical and</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EokvhwB9AlrjAIa3Hju34uIqgBa0o0KIiLpbjdRQvSby1k0L59Xi7ZQ-cZjT-3lhvHkIvgZwAIfR0Y-0JLWnFHqEFECUKVcnvj9GCgKJFJTgcoWcpbQghjIvyKTqiQiiumFigy4sRT53Df1wMU1eEuHYRd2bw_RRGb0bchojr5eXnK4qt6e3cm8mHMeHQ4rT1I7YxpBRus8qGYRvmcZ2eoyet6ZN78VCP0bf3767q82J1cfahXq6KruSUFUDLVlVUAadUKkpa20qQDW9KoMo1sjKyzQ7ysGKsVCRjrlGVaRQYqxRhx-jtfm9ner2NfjDxTgfj9flypXezbBeAl-QWMvtmz25juJldmvTgk3V9b0YX5qRBSg5cgNytff0fuglzHLOTHSWAVJLyTL16oOZmcOvD__9Om4HTPfDL9-7u8A5E7zLTOTN9n5n-WNf3TVYUe4VPk_t9UJj4UwvJJNfXn870j-vyK9DcfGF_AYazlHc</recordid><startdate>20160415</startdate><enddate>20160415</enddate><creator>Vela, Sergi</creator><creator>Fumanal, Maria</creator><creator>Ribas-Ariño, Jordi</creator><creator>Robert, Vincent</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>NPM</scope><scope>JQ2</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4517-5213</orcidid></search><sort><creationdate>20160415</creationdate><title>On the zeroth-order hamiltonian for CASPT2 calculations of spin crossover compounds</title><author>Vela, Sergi ; Fumanal, Maria ; Ribas-Ariño, Jordi ; Robert, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h4523-124f982915227920fcf717b5b4129eb78a7f019f71833490522eb98ab91ac9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Chemical compounds</topic><topic>Chemical Sciences</topic><topic>computational chemistry</topic><topic>molecular magnetism</topic><topic>or physical chemistry</topic><topic>Quantum physics</topic><topic>spin crossover</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vela, Sergi</creatorcontrib><creatorcontrib>Fumanal, Maria</creatorcontrib><creatorcontrib>Ribas-Ariño, Jordi</creatorcontrib><creatorcontrib>Robert, Vincent</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vela, Sergi</au><au>Fumanal, Maria</au><au>Ribas-Ariño, Jordi</au><au>Robert, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the zeroth-order hamiltonian for CASPT2 calculations of spin crossover compounds</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2016-04-15</date><risdate>2016</risdate><volume>37</volume><issue>10</issue><spage>947</spage><epage>953</epage><pages>947-953</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>Complete active space self‐consistent field theory (CASSCF) calculations and subsequent second‐order perturbation theory treatment (CASPT2) are discussed in the evaluation of the spin‐states energy difference (ΔHelec) of a series of seven spin crossover (SCO) compounds. The reference values have been extracted from a combination of experimental measurements and DFT + U calculations, as discussed in a recent article (Vela et al., Phys Chem Chem Phys 2015, 17, 16306). It is definitely proven that the critical IPEA parameter used in CASPT2 calculations of ΔHelec, a key parameter in the design of SCO compounds, should be modified with respect to its default value of 0.25 a.u. and increased up to 0.50 a.u. The satisfactory agreement observed previously in the literature might result from an error cancellation originated in the default IPEA, which overestimates the stability of the HS state, and the erroneous atomic orbital basis set contraction of carbon atoms, which stabilizes the LS states. © 2015 Wiley Periodicals, Inc. The IPEA parameter used within CASPT2 is benchmarked for its use in the calculation of adiabatic energy gaps of Spin Crossover compounds. The importance of the recently discovered error in the ANO‐RCC basis set contraction for carbon atoms is also unveiled.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26695936</pmid><doi>10.1002/jcc.24283</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4517-5213</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2016-04, Vol.37 (10), p.947-953
issn 0192-8651
1096-987X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03511540v1
source Wiley Online Library Journals Frontfile Complete
subjects Atoms & subatomic particles
Chemical compounds
Chemical Sciences
computational chemistry
molecular magnetism
or physical chemistry
Quantum physics
spin crossover
Theoretical and
title On the zeroth-order hamiltonian for CASPT2 calculations of spin crossover compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20zeroth-order%20hamiltonian%20for%20CASPT2%20calculations%20of%20spin%20crossover%20compounds&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Vela,%20Sergi&rft.date=2016-04-15&rft.volume=37&rft.issue=10&rft.spage=947&rft.epage=953&rft.pages=947-953&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.24283&rft_dat=%3Cproquest_hal_p%3E1775156170%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776108725&rft_id=info:pmid/26695936&rfr_iscdi=true