Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films
Pure and Mg-doped manganese oxide thin films were synthesized on heated glass substrates using the spray pyrolysis technique. The surface chemical composition was investigated by the use of X-ray photoelectron spectroscopy (XPS). Structural and morphological properties were studied by using X-ray di...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2021-05, Vol.11 (5), p.598 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 598 |
container_title | Coatings (Basel) |
container_volume | 11 |
creator | Dahamni, Mohamed Amine Ghamnia, Mostefa Naceri, Salah Eddine Fauquet, Carole Tonneau, Didier Pireaux, Jean-Jacques Bouadi, Abed |
description | Pure and Mg-doped manganese oxide thin films were synthesized on heated glass substrates using the spray pyrolysis technique. The surface chemical composition was investigated by the use of X-ray photoelectron spectroscopy (XPS). Structural and morphological properties were studied by using X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscopy (AFM). Optical properties were characterized by UV-visible spectroscopy. XPS spectra showed typical Mn (2p3/2), (2p1/2) and O (1s) peaks of Mn3O4 with a slight shift attributed to the formation of different chemical states of manganese. XRD analysis revealed the tetragonal phase of Mn3O4 with a preferred (211) growth orientation that improved with Mg-doping; likewise, grain size is observed to increase with the Mg doping. SEM images of Mn3O4 films showed rough surfaces composed of uniformly distributed nanograins whose size decreases with the Mg-doping. The manganese oxide films surface observed in AFM show a textured, rough and porous surface. The combination of transmittance and absorption data in the UV-visible range allowed determining the energy values of the Eg band gap (1.5–2.5 eV). The decrease of the band gap with the Mg-doping increase is attributed to the influence of the greater size of the Mg2+ ion in the manganese oxide lattice. |
doi_str_mv | 10.3390/coatings11050598 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03509919v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532312347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-40101e52cb710e4128b09d1eeed68c798e5d023fe1983cc237c2d6e0180917e3</originalsourceid><addsrcrecordid>eNpdkEFrwkAQRpfSQsV673Ghpx7Szuwakz2KrVWwKOh9WZOJRmI23Y2l-fddsZTSuczH8BgeH2P3CE9SKnjOrGnLeucRIYZYpVesJyBR0WiI4vpPvmUD7w8QRqFMUfXYfN040_FV52zV-dLzdVe3ezonW_DVyRE3dc7fd9GLbSgEU-9MTZ748qvMiW_2Zc2nZXX0d-ymMJWnwc_us830dTOZRYvl23wyXkSZHCZtNAQEpFhk2wSBglO6BZUjEeWjNEtUSnEOQhaEKpVZJmSSiXxEgGlwTkj22ePl7d5UunHl0bhOW1Pq2XihzzeQMSiF6hMD-3BhG2c_TuRbfbAnVwc7LWIpJIqgFCi4UJmz3jsqft8i6HO9-n-98htrmGy6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532312347</pqid></control><display><type>article</type><title>Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><creator>Dahamni, Mohamed Amine ; Ghamnia, Mostefa ; Naceri, Salah Eddine ; Fauquet, Carole ; Tonneau, Didier ; Pireaux, Jean-Jacques ; Bouadi, Abed</creator><creatorcontrib>Dahamni, Mohamed Amine ; Ghamnia, Mostefa ; Naceri, Salah Eddine ; Fauquet, Carole ; Tonneau, Didier ; Pireaux, Jean-Jacques ; Bouadi, Abed</creatorcontrib><description>Pure and Mg-doped manganese oxide thin films were synthesized on heated glass substrates using the spray pyrolysis technique. The surface chemical composition was investigated by the use of X-ray photoelectron spectroscopy (XPS). Structural and morphological properties were studied by using X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscopy (AFM). Optical properties were characterized by UV-visible spectroscopy. XPS spectra showed typical Mn (2p3/2), (2p1/2) and O (1s) peaks of Mn3O4 with a slight shift attributed to the formation of different chemical states of manganese. XRD analysis revealed the tetragonal phase of Mn3O4 with a preferred (211) growth orientation that improved with Mg-doping; likewise, grain size is observed to increase with the Mg doping. SEM images of Mn3O4 films showed rough surfaces composed of uniformly distributed nanograins whose size decreases with the Mg-doping. The manganese oxide films surface observed in AFM show a textured, rough and porous surface. The combination of transmittance and absorption data in the UV-visible range allowed determining the energy values of the Eg band gap (1.5–2.5 eV). The decrease of the band gap with the Mg-doping increase is attributed to the influence of the greater size of the Mg2+ ion in the manganese oxide lattice.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings11050598</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic force microscopes ; Atomic force microscopy ; Chemical composition ; Chemical Sciences ; Doping ; Energy gap ; Energy value ; Glass substrates ; Grain size ; Inorganic chemistry ; Magnesium ; Manganese oxides ; Molecular beam epitaxy ; Optical properties ; Oxide coatings ; Photoelectrons ; Scanning electron microscopy ; Spectrum analysis ; Spray pyrolysis ; Thin films ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Coatings (Basel), 2021-05, Vol.11 (5), p.598</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-40101e52cb710e4128b09d1eeed68c798e5d023fe1983cc237c2d6e0180917e3</citedby><cites>FETCH-LOGICAL-c347t-40101e52cb710e4128b09d1eeed68c798e5d023fe1983cc237c2d6e0180917e3</cites><orcidid>0000-0002-5522-9190 ; 0000-0001-5920-1198 ; 0000-0003-2866-8910 ; 0000-0003-4245-8442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03509919$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahamni, Mohamed Amine</creatorcontrib><creatorcontrib>Ghamnia, Mostefa</creatorcontrib><creatorcontrib>Naceri, Salah Eddine</creatorcontrib><creatorcontrib>Fauquet, Carole</creatorcontrib><creatorcontrib>Tonneau, Didier</creatorcontrib><creatorcontrib>Pireaux, Jean-Jacques</creatorcontrib><creatorcontrib>Bouadi, Abed</creatorcontrib><title>Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films</title><title>Coatings (Basel)</title><description>Pure and Mg-doped manganese oxide thin films were synthesized on heated glass substrates using the spray pyrolysis technique. The surface chemical composition was investigated by the use of X-ray photoelectron spectroscopy (XPS). Structural and morphological properties were studied by using X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscopy (AFM). Optical properties were characterized by UV-visible spectroscopy. XPS spectra showed typical Mn (2p3/2), (2p1/2) and O (1s) peaks of Mn3O4 with a slight shift attributed to the formation of different chemical states of manganese. XRD analysis revealed the tetragonal phase of Mn3O4 with a preferred (211) growth orientation that improved with Mg-doping; likewise, grain size is observed to increase with the Mg doping. SEM images of Mn3O4 films showed rough surfaces composed of uniformly distributed nanograins whose size decreases with the Mg-doping. The manganese oxide films surface observed in AFM show a textured, rough and porous surface. The combination of transmittance and absorption data in the UV-visible range allowed determining the energy values of the Eg band gap (1.5–2.5 eV). The decrease of the band gap with the Mg-doping increase is attributed to the influence of the greater size of the Mg2+ ion in the manganese oxide lattice.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Chemical composition</subject><subject>Chemical Sciences</subject><subject>Doping</subject><subject>Energy gap</subject><subject>Energy value</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>Inorganic chemistry</subject><subject>Magnesium</subject><subject>Manganese oxides</subject><subject>Molecular beam epitaxy</subject><subject>Optical properties</subject><subject>Oxide coatings</subject><subject>Photoelectrons</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Spray pyrolysis</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkEFrwkAQRpfSQsV673Ghpx7Szuwakz2KrVWwKOh9WZOJRmI23Y2l-fddsZTSuczH8BgeH2P3CE9SKnjOrGnLeucRIYZYpVesJyBR0WiI4vpPvmUD7w8QRqFMUfXYfN040_FV52zV-dLzdVe3ezonW_DVyRE3dc7fd9GLbSgEU-9MTZ748qvMiW_2Zc2nZXX0d-ymMJWnwc_us830dTOZRYvl23wyXkSZHCZtNAQEpFhk2wSBglO6BZUjEeWjNEtUSnEOQhaEKpVZJmSSiXxEgGlwTkj22ePl7d5UunHl0bhOW1Pq2XihzzeQMSiF6hMD-3BhG2c_TuRbfbAnVwc7LWIpJIqgFCi4UJmz3jsqft8i6HO9-n-98htrmGy6</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Dahamni, Mohamed Amine</creator><creator>Ghamnia, Mostefa</creator><creator>Naceri, Salah Eddine</creator><creator>Fauquet, Carole</creator><creator>Tonneau, Didier</creator><creator>Pireaux, Jean-Jacques</creator><creator>Bouadi, Abed</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5522-9190</orcidid><orcidid>https://orcid.org/0000-0001-5920-1198</orcidid><orcidid>https://orcid.org/0000-0003-2866-8910</orcidid><orcidid>https://orcid.org/0000-0003-4245-8442</orcidid></search><sort><creationdate>20210501</creationdate><title>Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films</title><author>Dahamni, Mohamed Amine ; Ghamnia, Mostefa ; Naceri, Salah Eddine ; Fauquet, Carole ; Tonneau, Didier ; Pireaux, Jean-Jacques ; Bouadi, Abed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-40101e52cb710e4128b09d1eeed68c798e5d023fe1983cc237c2d6e0180917e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Chemical composition</topic><topic>Chemical Sciences</topic><topic>Doping</topic><topic>Energy gap</topic><topic>Energy value</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>Inorganic chemistry</topic><topic>Magnesium</topic><topic>Manganese oxides</topic><topic>Molecular beam epitaxy</topic><topic>Optical properties</topic><topic>Oxide coatings</topic><topic>Photoelectrons</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Spray pyrolysis</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahamni, Mohamed Amine</creatorcontrib><creatorcontrib>Ghamnia, Mostefa</creatorcontrib><creatorcontrib>Naceri, Salah Eddine</creatorcontrib><creatorcontrib>Fauquet, Carole</creatorcontrib><creatorcontrib>Tonneau, Didier</creatorcontrib><creatorcontrib>Pireaux, Jean-Jacques</creatorcontrib><creatorcontrib>Bouadi, Abed</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahamni, Mohamed Amine</au><au>Ghamnia, Mostefa</au><au>Naceri, Salah Eddine</au><au>Fauquet, Carole</au><au>Tonneau, Didier</au><au>Pireaux, Jean-Jacques</au><au>Bouadi, Abed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films</atitle><jtitle>Coatings (Basel)</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>598</spage><pages>598-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Pure and Mg-doped manganese oxide thin films were synthesized on heated glass substrates using the spray pyrolysis technique. The surface chemical composition was investigated by the use of X-ray photoelectron spectroscopy (XPS). Structural and morphological properties were studied by using X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscopy (AFM). Optical properties were characterized by UV-visible spectroscopy. XPS spectra showed typical Mn (2p3/2), (2p1/2) and O (1s) peaks of Mn3O4 with a slight shift attributed to the formation of different chemical states of manganese. XRD analysis revealed the tetragonal phase of Mn3O4 with a preferred (211) growth orientation that improved with Mg-doping; likewise, grain size is observed to increase with the Mg doping. SEM images of Mn3O4 films showed rough surfaces composed of uniformly distributed nanograins whose size decreases with the Mg-doping. The manganese oxide films surface observed in AFM show a textured, rough and porous surface. The combination of transmittance and absorption data in the UV-visible range allowed determining the energy values of the Eg band gap (1.5–2.5 eV). The decrease of the band gap with the Mg-doping increase is attributed to the influence of the greater size of the Mg2+ ion in the manganese oxide lattice.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings11050598</doi><orcidid>https://orcid.org/0000-0002-5522-9190</orcidid><orcidid>https://orcid.org/0000-0001-5920-1198</orcidid><orcidid>https://orcid.org/0000-0003-2866-8910</orcidid><orcidid>https://orcid.org/0000-0003-4245-8442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2021-05, Vol.11 (5), p.598 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03509919v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection |
subjects | Atomic force microscopes Atomic force microscopy Chemical composition Chemical Sciences Doping Energy gap Energy value Glass substrates Grain size Inorganic chemistry Magnesium Manganese oxides Molecular beam epitaxy Optical properties Oxide coatings Photoelectrons Scanning electron microscopy Spectrum analysis Spray pyrolysis Thin films X ray photoelectron spectroscopy X-ray diffraction |
title | Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spray%20Pyrolysis%20Synthesis%20of%20Pure%20and%20Mg-Doped%20Manganese%20Oxide%20Thin%20Films&rft.jtitle=Coatings%20(Basel)&rft.au=Dahamni,%20Mohamed%20Amine&rft.date=2021-05-01&rft.volume=11&rft.issue=5&rft.spage=598&rft.pages=598-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings11050598&rft_dat=%3Cproquest_hal_p%3E2532312347%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532312347&rft_id=info:pmid/&rfr_iscdi=true |