Modeling and Control Maximum Power Point Tracking of an Autonomous Photovoltaic System Using Artificial Intelligence
Despite investigative efforts seen in the literature, the maximum power point tracking remains again a crucial problem in photovoltaic system (PV) connected to the power grid. In this paper, a new maximum power point tracking technique which is our contribution to the resolution of this problem is t...
Gespeichert in:
Veröffentlicht in: | Dian li yu neng yuan 2021, Vol.13 (12), p.428-447 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 447 |
---|---|
container_issue | 12 |
container_start_page | 428 |
container_title | Dian li yu neng yuan |
container_volume | 13 |
creator | Fousseyni Toure, Amadou Tchoffa, David El Mhamedi, Abderrahman Diourte, Badie Lamolle, Myriam |
description | Despite investigative efforts seen in the literature, the maximum power point tracking remains again a crucial problem in photovoltaic system (PV) connected to the power grid. In this paper, a new maximum power point tracking technique which is our contribution to the resolution of this problem is treated. We proposed a hybrid controller of maximum power point tracking based on artificial neural networks. This hybrid controller is composed of two neural networks. The first network has two inputs and two outputs: the inputs are solar irradiation and ambient temperature and the outputs are the reference output voltage and current corresponding at the maximum power point. The second network has two inputs and one output: the inputs use the outputs of the first network and the output will be the periodic cycle which controls the DC/DC converter. The training step of neural networks requires two modes: the offline mode and the online mode. The data necessary for the training are collected from a very large number of real-time measurements of the PV module. The performance of the proposed method is analyzed under different operating conditions using the Matlab/Simulink simulation tool. A comparative study between the proposed method and the perturbation and observation approach was presented. |
doi_str_mv | 10.4236/epe.2021.1312030 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03505422v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03505422v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1170-629725e0d6bed7821a4d82db07fd8556ac1484b083772cb14804a11e918f05db3</originalsourceid><addsrcrecordid>eNo9kM1PwjAUwBujiQS5e-zVw7Bf27rjQlRIIJoIibemazuodivpCsp_7ybEd3hf-b13-AFwj9GUEZo9mr2ZEkTwFFNMEEVXYIQLlieUY3791xcJYfTjFky67hP1wbI0y4oRiCuvjbPtFspWw5lvY_AOruSPbQ4NfPPfJvTZthGug1RfA-jrnoXlIfrWN_7Qwbedj_7oXZRWwfdTF00DN92AliHa2iorHVy00Thnt6ZV5g7c1NJ1ZnKpY7B5flrP5sny9WUxK5eJwjhHSUaKnKQG6awyOucES6Y50RXKa83TNJMKM84qxGmeE1X1A2ISY1NgXqNUV3QMHs5_d9KJfbCNDCfhpRXzcimGHaIpShkhR9yz6Myq4LsumPr_ACMxSBa9ZDFIFhfJ9Bddo3AX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling and Control Maximum Power Point Tracking of an Autonomous Photovoltaic System Using Artificial Intelligence</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fousseyni Toure, Amadou ; Tchoffa, David ; El Mhamedi, Abderrahman ; Diourte, Badie ; Lamolle, Myriam</creator><creatorcontrib>Fousseyni Toure, Amadou ; Tchoffa, David ; El Mhamedi, Abderrahman ; Diourte, Badie ; Lamolle, Myriam</creatorcontrib><description>Despite investigative efforts seen in the literature, the maximum power point tracking remains again a crucial problem in photovoltaic system (PV) connected to the power grid. In this paper, a new maximum power point tracking technique which is our contribution to the resolution of this problem is treated. We proposed a hybrid controller of maximum power point tracking based on artificial neural networks. This hybrid controller is composed of two neural networks. The first network has two inputs and two outputs: the inputs are solar irradiation and ambient temperature and the outputs are the reference output voltage and current corresponding at the maximum power point. The second network has two inputs and one output: the inputs use the outputs of the first network and the output will be the periodic cycle which controls the DC/DC converter. The training step of neural networks requires two modes: the offline mode and the online mode. The data necessary for the training are collected from a very large number of real-time measurements of the PV module. The performance of the proposed method is analyzed under different operating conditions using the Matlab/Simulink simulation tool. A comparative study between the proposed method and the perturbation and observation approach was presented.</description><identifier>ISSN: 1949-243X</identifier><identifier>EISSN: 1947-3818</identifier><identifier>DOI: 10.4236/epe.2021.1312030</identifier><language>eng</language><publisher>Scientific Research Publishing (SCIRP)</publisher><subject>Artificial Intelligence ; Automatic Control Engineering ; Computer Science ; Electric power ; Engineering Sciences</subject><ispartof>Dian li yu neng yuan, 2021, Vol.13 (12), p.428-447</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1170-629725e0d6bed7821a4d82db07fd8556ac1484b083772cb14804a11e918f05db3</cites><orcidid>0000-0001-9652-7891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022,27921,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03505422$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fousseyni Toure, Amadou</creatorcontrib><creatorcontrib>Tchoffa, David</creatorcontrib><creatorcontrib>El Mhamedi, Abderrahman</creatorcontrib><creatorcontrib>Diourte, Badie</creatorcontrib><creatorcontrib>Lamolle, Myriam</creatorcontrib><title>Modeling and Control Maximum Power Point Tracking of an Autonomous Photovoltaic System Using Artificial Intelligence</title><title>Dian li yu neng yuan</title><description>Despite investigative efforts seen in the literature, the maximum power point tracking remains again a crucial problem in photovoltaic system (PV) connected to the power grid. In this paper, a new maximum power point tracking technique which is our contribution to the resolution of this problem is treated. We proposed a hybrid controller of maximum power point tracking based on artificial neural networks. This hybrid controller is composed of two neural networks. The first network has two inputs and two outputs: the inputs are solar irradiation and ambient temperature and the outputs are the reference output voltage and current corresponding at the maximum power point. The second network has two inputs and one output: the inputs use the outputs of the first network and the output will be the periodic cycle which controls the DC/DC converter. The training step of neural networks requires two modes: the offline mode and the online mode. The data necessary for the training are collected from a very large number of real-time measurements of the PV module. The performance of the proposed method is analyzed under different operating conditions using the Matlab/Simulink simulation tool. A comparative study between the proposed method and the perturbation and observation approach was presented.</description><subject>Artificial Intelligence</subject><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><issn>1949-243X</issn><issn>1947-3818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwjAUwBujiQS5e-zVw7Bf27rjQlRIIJoIibemazuodivpCsp_7ybEd3hf-b13-AFwj9GUEZo9mr2ZEkTwFFNMEEVXYIQLlieUY3791xcJYfTjFky67hP1wbI0y4oRiCuvjbPtFspWw5lvY_AOruSPbQ4NfPPfJvTZthGug1RfA-jrnoXlIfrWN_7Qwbedj_7oXZRWwfdTF00DN92AliHa2iorHVy00Thnt6ZV5g7c1NJ1ZnKpY7B5flrP5sny9WUxK5eJwjhHSUaKnKQG6awyOucES6Y50RXKa83TNJMKM84qxGmeE1X1A2ISY1NgXqNUV3QMHs5_d9KJfbCNDCfhpRXzcimGHaIpShkhR9yz6Myq4LsumPr_ACMxSBa9ZDFIFhfJ9Bddo3AX</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Fousseyni Toure, Amadou</creator><creator>Tchoffa, David</creator><creator>El Mhamedi, Abderrahman</creator><creator>Diourte, Badie</creator><creator>Lamolle, Myriam</creator><general>Scientific Research Publishing (SCIRP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9652-7891</orcidid></search><sort><creationdate>2021</creationdate><title>Modeling and Control Maximum Power Point Tracking of an Autonomous Photovoltaic System Using Artificial Intelligence</title><author>Fousseyni Toure, Amadou ; Tchoffa, David ; El Mhamedi, Abderrahman ; Diourte, Badie ; Lamolle, Myriam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1170-629725e0d6bed7821a4d82db07fd8556ac1484b083772cb14804a11e918f05db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Fousseyni Toure, Amadou</creatorcontrib><creatorcontrib>Tchoffa, David</creatorcontrib><creatorcontrib>El Mhamedi, Abderrahman</creatorcontrib><creatorcontrib>Diourte, Badie</creatorcontrib><creatorcontrib>Lamolle, Myriam</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Dian li yu neng yuan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fousseyni Toure, Amadou</au><au>Tchoffa, David</au><au>El Mhamedi, Abderrahman</au><au>Diourte, Badie</au><au>Lamolle, Myriam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Control Maximum Power Point Tracking of an Autonomous Photovoltaic System Using Artificial Intelligence</atitle><jtitle>Dian li yu neng yuan</jtitle><date>2021</date><risdate>2021</risdate><volume>13</volume><issue>12</issue><spage>428</spage><epage>447</epage><pages>428-447</pages><issn>1949-243X</issn><eissn>1947-3818</eissn><abstract>Despite investigative efforts seen in the literature, the maximum power point tracking remains again a crucial problem in photovoltaic system (PV) connected to the power grid. In this paper, a new maximum power point tracking technique which is our contribution to the resolution of this problem is treated. We proposed a hybrid controller of maximum power point tracking based on artificial neural networks. This hybrid controller is composed of two neural networks. The first network has two inputs and two outputs: the inputs are solar irradiation and ambient temperature and the outputs are the reference output voltage and current corresponding at the maximum power point. The second network has two inputs and one output: the inputs use the outputs of the first network and the output will be the periodic cycle which controls the DC/DC converter. The training step of neural networks requires two modes: the offline mode and the online mode. The data necessary for the training are collected from a very large number of real-time measurements of the PV module. The performance of the proposed method is analyzed under different operating conditions using the Matlab/Simulink simulation tool. A comparative study between the proposed method and the perturbation and observation approach was presented.</abstract><pub>Scientific Research Publishing (SCIRP)</pub><doi>10.4236/epe.2021.1312030</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9652-7891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-243X |
ispartof | Dian li yu neng yuan, 2021, Vol.13 (12), p.428-447 |
issn | 1949-243X 1947-3818 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03505422v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial Intelligence Automatic Control Engineering Computer Science Electric power Engineering Sciences |
title | Modeling and Control Maximum Power Point Tracking of an Autonomous Photovoltaic System Using Artificial Intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Control%20Maximum%20Power%20Point%20Tracking%20of%20an%20Autonomous%20Photovoltaic%20System%20Using%20Artificial%20Intelligence&rft.jtitle=Dian%20li%20yu%20neng%20yuan&rft.au=Fousseyni%20Toure,%20Amadou&rft.date=2021&rft.volume=13&rft.issue=12&rft.spage=428&rft.epage=447&rft.pages=428-447&rft.issn=1949-243X&rft.eissn=1947-3818&rft_id=info:doi/10.4236/epe.2021.1312030&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03505422v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |