Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification
Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for...
Gespeichert in:
Veröffentlicht in: | Global change biology 2011-12, Vol.17 (12), p.3655-3666 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3666 |
---|---|
container_issue | 12 |
container_start_page | 3655 |
container_title | Global change biology |
container_volume | 17 |
creator | Anthony, Kenneth R. N. A. Kleypas, Joan Gattuso, Jean-Pierre |
description | Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef. |
doi_str_mv | 10.1111/j.1365-2486.2011.02510.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03502007v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526678931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4420-77daf235bcdddbecd9799c47e50782e8989c11266f9c4e54e79d5af10816a2783</originalsourceid><addsrcrecordid>eNqNkUFv2zAMhY1hA9Z1-w_CgB12cErJlmUfdmiDLh0QtCi2YUeCkSVEmWOlkrMm_77yHORcXUSQ33sgHrOMcZjx9K42M15UMhdlXc0EcD4DIdPs8Ca7OA_ejrUscw68eJ99iHEDAIWA6iJr5z5Qx4IxNrKtb509smFtXGDR0DMNJjBNYeV7ptdm6-IQjixnbrvrnKbB-T4y68PYID1E5i3z2lDPSLvkdWI-Zu8sddF8Ov2X2e_vt7_md_nyYfFjfr3MdVkKyJVqyYpCrnTbtiuj20Y1jS6VkaBqYeqmbjTnoqps6hpZGtW0kiyHmlckVF1cZl8n3zV1uAtuS-GInhzeXS9x7EEhQQCofzyxnyd2F_zT3sQBN34f-rQeNsmQCwlVguoJ0sHHGIw9u3LAMX7c4JgyjinjGD_-jx8PSfrl5E9RU2cD9drFs16UquRp78R9m7hn15njq_1xMb8Zq6TPJ326jTmc9RT-YqUKJfHP_QLhnj-Kx58SZfECmRWmeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908112506</pqid></control><display><type>article</type><title>Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification</title><source>Access via Wiley Online Library</source><creator>Anthony, Kenneth R. N. ; A. Kleypas, Joan ; Gattuso, Jean-Pierre</creator><creatorcontrib>Anthony, Kenneth R. N. ; A. Kleypas, Joan ; Gattuso, Jean-Pierre</creatorcontrib><description>Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/j.1365-2486.2011.02510.x</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; aragonite saturation ; Biogeochemistry ; Biological and medical sciences ; calcification ; Carbon dioxide ; coral reef ; Coral reefs ; Earth Sciences ; Fundamental and applied biological sciences. Psychology ; General aspects ; Great Barrier Reef ; Marine ecology ; ocean acidification ; Oceanography ; Oceans ; Sciences of the Universe</subject><ispartof>Global change biology, 2011-12, Vol.17 (12), p.3655-3666</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright (c) 2011 Blackwell Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4420-77daf235bcdddbecd9799c47e50782e8989c11266f9c4e54e79d5af10816a2783</citedby><cites>FETCH-LOGICAL-c4420-77daf235bcdddbecd9799c47e50782e8989c11266f9c4e54e79d5af10816a2783</cites><orcidid>0000-0002-4533-4114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2486.2011.02510.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2486.2011.02510.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24741816$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03502007$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Anthony, Kenneth R. N.</creatorcontrib><creatorcontrib>A. Kleypas, Joan</creatorcontrib><creatorcontrib>Gattuso, Jean-Pierre</creatorcontrib><title>Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification</title><title>Global change biology</title><addtitle>Glob. Change Biol</addtitle><description>Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>aragonite saturation</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>calcification</subject><subject>Carbon dioxide</subject><subject>coral reef</subject><subject>Coral reefs</subject><subject>Earth Sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Great Barrier Reef</subject><subject>Marine ecology</subject><subject>ocean acidification</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Sciences of the Universe</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv2zAMhY1hA9Z1-w_CgB12cErJlmUfdmiDLh0QtCi2YUeCkSVEmWOlkrMm_77yHORcXUSQ33sgHrOMcZjx9K42M15UMhdlXc0EcD4DIdPs8Ca7OA_ejrUscw68eJ99iHEDAIWA6iJr5z5Qx4IxNrKtb509smFtXGDR0DMNJjBNYeV7ptdm6-IQjixnbrvrnKbB-T4y68PYID1E5i3z2lDPSLvkdWI-Zu8sddF8Ov2X2e_vt7_md_nyYfFjfr3MdVkKyJVqyYpCrnTbtiuj20Y1jS6VkaBqYeqmbjTnoqps6hpZGtW0kiyHmlckVF1cZl8n3zV1uAtuS-GInhzeXS9x7EEhQQCofzyxnyd2F_zT3sQBN34f-rQeNsmQCwlVguoJ0sHHGIw9u3LAMX7c4JgyjinjGD_-jx8PSfrl5E9RU2cD9drFs16UquRp78R9m7hn15njq_1xMb8Zq6TPJ326jTmc9RT-YqUKJfHP_QLhnj-Kx58SZfECmRWmeQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Anthony, Kenneth R. N.</creator><creator>A. Kleypas, Joan</creator><creator>Gattuso, Jean-Pierre</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4533-4114</orcidid></search><sort><creationdate>201112</creationdate><title>Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification</title><author>Anthony, Kenneth R. N. ; A. Kleypas, Joan ; Gattuso, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4420-77daf235bcdddbecd9799c47e50782e8989c11266f9c4e54e79d5af10816a2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>aragonite saturation</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>calcification</topic><topic>Carbon dioxide</topic><topic>coral reef</topic><topic>Coral reefs</topic><topic>Earth Sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Great Barrier Reef</topic><topic>Marine ecology</topic><topic>ocean acidification</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anthony, Kenneth R. N.</creatorcontrib><creatorcontrib>A. Kleypas, Joan</creatorcontrib><creatorcontrib>Gattuso, Jean-Pierre</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anthony, Kenneth R. N.</au><au>A. Kleypas, Joan</au><au>Gattuso, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification</atitle><jtitle>Global change biology</jtitle><addtitle>Glob. Change Biol</addtitle><date>2011-12</date><risdate>2011</risdate><volume>17</volume><issue>12</issue><spage>3655</spage><epage>3666</epage><pages>3655-3666</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2486.2011.02510.x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4533-4114</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2011-12, Vol.17 (12), p.3655-3666 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03502007v1 |
source | Access via Wiley Online Library |
subjects | Animal and plant ecology Animal, plant and microbial ecology aragonite saturation Biogeochemistry Biological and medical sciences calcification Carbon dioxide coral reef Coral reefs Earth Sciences Fundamental and applied biological sciences. Psychology General aspects Great Barrier Reef Marine ecology ocean acidification Oceanography Oceans Sciences of the Universe |
title | Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T01%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coral%20reefs%20modify%20their%20seawater%20carbon%20chemistry%20-%20implications%20for%20impacts%20of%20ocean%20acidification&rft.jtitle=Global%20change%20biology&rft.au=Anthony,%20Kenneth%20R.%20N.&rft.date=2011-12&rft.volume=17&rft.issue=12&rft.spage=3655&rft.epage=3666&rft.pages=3655-3666&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/j.1365-2486.2011.02510.x&rft_dat=%3Cproquest_hal_p%3E2526678931%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=908112506&rft_id=info:pmid/&rfr_iscdi=true |