A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform
Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 ...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-09, Vol.33 (37), p.e2101128-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 37 |
container_start_page | e2101128 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Cao, Yu Tan, Siew Li Cheung, Eric Jun Hao Siew, Shawn Yohanes Li, Changjian Liu, Yan Tang, Chi Sin Lal, Manohar Chen, Guanyu Dogheche, Karim Yang, Ping Pennycook, Steven Wee, Andrew Thye Shen Chua, Soojin Dogheche, Elhadj Venkatesan, Thirumalai Danner, Aaron |
description | Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 times stronger r‐parameter and would ordinarily be a more attractive material choice for such modulators or other applications. In practice, barium titanate thin films for optical waveguide devices are usually grown on magnesium oxide due to its low refractive index, allowing vertical mode confinement. However, the crystal quality is normally degraded. Here, a group of scandate‐based substrates with small lattice mismatch and low refractive index compared to that of barium titanate is identified, thus concurrently satisfying high crystal quality and vertical optical mode confinement. This work provides a platform for nonlinear on‐chip optoelectronics and can be promising for waveguide‐based optical devices such as Mach–Zehnder modulators, wavelength division multiplexing, and quantum optics‐on‐chip.
A barium‐titanate‐on‐insulator platform with high‐quality barium titanate single‐crystal growth and excellent vertical optical confinement is introduced. The phase‐transition temperature of barium titanate in the platform is extended to at least 700 °C, which helps to avoid difficulties in device fabrication caused by heating, such as cracking. A low propagation loss is verified in the resultant fabricated waveguide. |
doi_str_mv | 10.1002/adma.202101128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03501430v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572201338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4248-dc8d28ca2c42376c5cb0f5cbb146ed826a86f55b74ca7112b193fb561413077b3</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRVcIJEKgpbZEA4XD7MuP0oRHIgWFItSr9XotHNnesGsD6fgEvpEvYUNQkGhoZjRX545mLkKnGEYYgFzKopEjAgQDxiTZQwPMCQ4ZpHwfDSClPEwjlhyiI-eWAJBGEA1QlgVX0lZ9EyyqTray05_vH6b1Zf5WFTqYtq6vZWdsMF91Rtdadda0lXLBg5dLY5tjdFDK2umTnz5Ej7c3i_EknM3vpuNsFipGWBIWKilIoiTxI40jxVUOpS85ZpEuEhLJJCo5z2OmZOwfyHFKy5xHmGEKcZzTIbrY7n2StVjZqpF2LYysxCSbiY0GlANmFF6wZ8-37Mqa5167TjSVU7quZatN7wThMeEkjSnz6NkfdGl62_pPvikCmNLEU6MtpaxxzupydwEGsUlfbNIXu_S9Id0aXqtar_-hRXZ9n_16vwCJm4g1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572201338</pqid></control><display><type>article</type><title>A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cao, Yu ; Tan, Siew Li ; Cheung, Eric Jun Hao ; Siew, Shawn Yohanes ; Li, Changjian ; Liu, Yan ; Tang, Chi Sin ; Lal, Manohar ; Chen, Guanyu ; Dogheche, Karim ; Yang, Ping ; Pennycook, Steven ; Wee, Andrew Thye Shen ; Chua, Soojin ; Dogheche, Elhadj ; Venkatesan, Thirumalai ; Danner, Aaron</creator><creatorcontrib>Cao, Yu ; Tan, Siew Li ; Cheung, Eric Jun Hao ; Siew, Shawn Yohanes ; Li, Changjian ; Liu, Yan ; Tang, Chi Sin ; Lal, Manohar ; Chen, Guanyu ; Dogheche, Karim ; Yang, Ping ; Pennycook, Steven ; Wee, Andrew Thye Shen ; Chua, Soojin ; Dogheche, Elhadj ; Venkatesan, Thirumalai ; Danner, Aaron</creatorcontrib><description>Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 times stronger r‐parameter and would ordinarily be a more attractive material choice for such modulators or other applications. In practice, barium titanate thin films for optical waveguide devices are usually grown on magnesium oxide due to its low refractive index, allowing vertical mode confinement. However, the crystal quality is normally degraded. Here, a group of scandate‐based substrates with small lattice mismatch and low refractive index compared to that of barium titanate is identified, thus concurrently satisfying high crystal quality and vertical optical mode confinement. This work provides a platform for nonlinear on‐chip optoelectronics and can be promising for waveguide‐based optical devices such as Mach–Zehnder modulators, wavelength division multiplexing, and quantum optics‐on‐chip.
A barium‐titanate‐on‐insulator platform with high‐quality barium titanate single‐crystal growth and excellent vertical optical confinement is introduced. The phase‐transition temperature of barium titanate in the platform is extended to at least 700 °C, which helps to avoid difficulties in device fabrication caused by heating, such as cracking. A low propagation loss is verified in the resultant fabricated waveguide.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101128</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Barium ; Barium titanates ; barium titanate‐on‐insulators ; Communication networks ; Confinement ; Engineering Sciences ; Lithium niobates ; low loss ; Mach-Zehnder interferometers ; Magnesium oxide ; Materials science ; Modulators ; nonlinear optical materials ; Optical communication ; Optical waveguides ; Optoelectronics ; Quantum optics ; Refractivity ; Substrates ; Superconductors (materials) ; Thin films ; waveguides ; Wavelength division multiplexing</subject><ispartof>Advanced materials (Weinheim), 2021-09, Vol.33 (37), p.e2101128-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4248-dc8d28ca2c42376c5cb0f5cbb146ed826a86f55b74ca7112b193fb561413077b3</citedby><cites>FETCH-LOGICAL-c4248-dc8d28ca2c42376c5cb0f5cbb146ed826a86f55b74ca7112b193fb561413077b3</cites><orcidid>0000-0003-1314-310X ; 0000-0002-9090-9626 ; 0000-0001-9683-4584 ; 0000-0002-5779-7466 ; 0000-0002-3229-0589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101128$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101128$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03501430$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Tan, Siew Li</creatorcontrib><creatorcontrib>Cheung, Eric Jun Hao</creatorcontrib><creatorcontrib>Siew, Shawn Yohanes</creatorcontrib><creatorcontrib>Li, Changjian</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Lal, Manohar</creatorcontrib><creatorcontrib>Chen, Guanyu</creatorcontrib><creatorcontrib>Dogheche, Karim</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Pennycook, Steven</creatorcontrib><creatorcontrib>Wee, Andrew Thye Shen</creatorcontrib><creatorcontrib>Chua, Soojin</creatorcontrib><creatorcontrib>Dogheche, Elhadj</creatorcontrib><creatorcontrib>Venkatesan, Thirumalai</creatorcontrib><creatorcontrib>Danner, Aaron</creatorcontrib><title>A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform</title><title>Advanced materials (Weinheim)</title><description>Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 times stronger r‐parameter and would ordinarily be a more attractive material choice for such modulators or other applications. In practice, barium titanate thin films for optical waveguide devices are usually grown on magnesium oxide due to its low refractive index, allowing vertical mode confinement. However, the crystal quality is normally degraded. Here, a group of scandate‐based substrates with small lattice mismatch and low refractive index compared to that of barium titanate is identified, thus concurrently satisfying high crystal quality and vertical optical mode confinement. This work provides a platform for nonlinear on‐chip optoelectronics and can be promising for waveguide‐based optical devices such as Mach–Zehnder modulators, wavelength division multiplexing, and quantum optics‐on‐chip.
A barium‐titanate‐on‐insulator platform with high‐quality barium titanate single‐crystal growth and excellent vertical optical confinement is introduced. The phase‐transition temperature of barium titanate in the platform is extended to at least 700 °C, which helps to avoid difficulties in device fabrication caused by heating, such as cracking. A low propagation loss is verified in the resultant fabricated waveguide.</description><subject>Barium</subject><subject>Barium titanates</subject><subject>barium titanate‐on‐insulators</subject><subject>Communication networks</subject><subject>Confinement</subject><subject>Engineering Sciences</subject><subject>Lithium niobates</subject><subject>low loss</subject><subject>Mach-Zehnder interferometers</subject><subject>Magnesium oxide</subject><subject>Materials science</subject><subject>Modulators</subject><subject>nonlinear optical materials</subject><subject>Optical communication</subject><subject>Optical waveguides</subject><subject>Optoelectronics</subject><subject>Quantum optics</subject><subject>Refractivity</subject><subject>Substrates</subject><subject>Superconductors (materials)</subject><subject>Thin films</subject><subject>waveguides</subject><subject>Wavelength division multiplexing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOw0AQRVcIJEKgpbZEA4XD7MuP0oRHIgWFItSr9XotHNnesGsD6fgEvpEvYUNQkGhoZjRX545mLkKnGEYYgFzKopEjAgQDxiTZQwPMCQ4ZpHwfDSClPEwjlhyiI-eWAJBGEA1QlgVX0lZ9EyyqTray05_vH6b1Zf5WFTqYtq6vZWdsMF91Rtdadda0lXLBg5dLY5tjdFDK2umTnz5Ej7c3i_EknM3vpuNsFipGWBIWKilIoiTxI40jxVUOpS85ZpEuEhLJJCo5z2OmZOwfyHFKy5xHmGEKcZzTIbrY7n2StVjZqpF2LYysxCSbiY0GlANmFF6wZ8-37Mqa5167TjSVU7quZatN7wThMeEkjSnz6NkfdGl62_pPvikCmNLEU6MtpaxxzupydwEGsUlfbNIXu_S9Id0aXqtar_-hRXZ9n_16vwCJm4g1</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Cao, Yu</creator><creator>Tan, Siew Li</creator><creator>Cheung, Eric Jun Hao</creator><creator>Siew, Shawn Yohanes</creator><creator>Li, Changjian</creator><creator>Liu, Yan</creator><creator>Tang, Chi Sin</creator><creator>Lal, Manohar</creator><creator>Chen, Guanyu</creator><creator>Dogheche, Karim</creator><creator>Yang, Ping</creator><creator>Pennycook, Steven</creator><creator>Wee, Andrew Thye Shen</creator><creator>Chua, Soojin</creator><creator>Dogheche, Elhadj</creator><creator>Venkatesan, Thirumalai</creator><creator>Danner, Aaron</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1314-310X</orcidid><orcidid>https://orcid.org/0000-0002-9090-9626</orcidid><orcidid>https://orcid.org/0000-0001-9683-4584</orcidid><orcidid>https://orcid.org/0000-0002-5779-7466</orcidid><orcidid>https://orcid.org/0000-0002-3229-0589</orcidid></search><sort><creationdate>20210901</creationdate><title>A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform</title><author>Cao, Yu ; Tan, Siew Li ; Cheung, Eric Jun Hao ; Siew, Shawn Yohanes ; Li, Changjian ; Liu, Yan ; Tang, Chi Sin ; Lal, Manohar ; Chen, Guanyu ; Dogheche, Karim ; Yang, Ping ; Pennycook, Steven ; Wee, Andrew Thye Shen ; Chua, Soojin ; Dogheche, Elhadj ; Venkatesan, Thirumalai ; Danner, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4248-dc8d28ca2c42376c5cb0f5cbb146ed826a86f55b74ca7112b193fb561413077b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium</topic><topic>Barium titanates</topic><topic>barium titanate‐on‐insulators</topic><topic>Communication networks</topic><topic>Confinement</topic><topic>Engineering Sciences</topic><topic>Lithium niobates</topic><topic>low loss</topic><topic>Mach-Zehnder interferometers</topic><topic>Magnesium oxide</topic><topic>Materials science</topic><topic>Modulators</topic><topic>nonlinear optical materials</topic><topic>Optical communication</topic><topic>Optical waveguides</topic><topic>Optoelectronics</topic><topic>Quantum optics</topic><topic>Refractivity</topic><topic>Substrates</topic><topic>Superconductors (materials)</topic><topic>Thin films</topic><topic>waveguides</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Tan, Siew Li</creatorcontrib><creatorcontrib>Cheung, Eric Jun Hao</creatorcontrib><creatorcontrib>Siew, Shawn Yohanes</creatorcontrib><creatorcontrib>Li, Changjian</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Lal, Manohar</creatorcontrib><creatorcontrib>Chen, Guanyu</creatorcontrib><creatorcontrib>Dogheche, Karim</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Pennycook, Steven</creatorcontrib><creatorcontrib>Wee, Andrew Thye Shen</creatorcontrib><creatorcontrib>Chua, Soojin</creatorcontrib><creatorcontrib>Dogheche, Elhadj</creatorcontrib><creatorcontrib>Venkatesan, Thirumalai</creatorcontrib><creatorcontrib>Danner, Aaron</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yu</au><au>Tan, Siew Li</au><au>Cheung, Eric Jun Hao</au><au>Siew, Shawn Yohanes</au><au>Li, Changjian</au><au>Liu, Yan</au><au>Tang, Chi Sin</au><au>Lal, Manohar</au><au>Chen, Guanyu</au><au>Dogheche, Karim</au><au>Yang, Ping</au><au>Pennycook, Steven</au><au>Wee, Andrew Thye Shen</au><au>Chua, Soojin</au><au>Dogheche, Elhadj</au><au>Venkatesan, Thirumalai</au><au>Danner, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>33</volume><issue>37</issue><spage>e2101128</spage><epage>n/a</epage><pages>e2101128-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 times stronger r‐parameter and would ordinarily be a more attractive material choice for such modulators or other applications. In practice, barium titanate thin films for optical waveguide devices are usually grown on magnesium oxide due to its low refractive index, allowing vertical mode confinement. However, the crystal quality is normally degraded. Here, a group of scandate‐based substrates with small lattice mismatch and low refractive index compared to that of barium titanate is identified, thus concurrently satisfying high crystal quality and vertical optical mode confinement. This work provides a platform for nonlinear on‐chip optoelectronics and can be promising for waveguide‐based optical devices such as Mach–Zehnder modulators, wavelength division multiplexing, and quantum optics‐on‐chip.
A barium‐titanate‐on‐insulator platform with high‐quality barium titanate single‐crystal growth and excellent vertical optical confinement is introduced. The phase‐transition temperature of barium titanate in the platform is extended to at least 700 °C, which helps to avoid difficulties in device fabrication caused by heating, such as cracking. A low propagation loss is verified in the resultant fabricated waveguide.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202101128</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1314-310X</orcidid><orcidid>https://orcid.org/0000-0002-9090-9626</orcidid><orcidid>https://orcid.org/0000-0001-9683-4584</orcidid><orcidid>https://orcid.org/0000-0002-5779-7466</orcidid><orcidid>https://orcid.org/0000-0002-3229-0589</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-09, Vol.33 (37), p.e2101128-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03501430v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Barium Barium titanates barium titanate‐on‐insulators Communication networks Confinement Engineering Sciences Lithium niobates low loss Mach-Zehnder interferometers Magnesium oxide Materials science Modulators nonlinear optical materials Optical communication Optical waveguides Optoelectronics Quantum optics Refractivity Substrates Superconductors (materials) Thin films waveguides Wavelength division multiplexing |
title | A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Barium%20Titanate%E2%80%90on%E2%80%90Oxide%20Insulator%20Optoelectronics%20Platform&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cao,%20Yu&rft.date=2021-09-01&rft.volume=33&rft.issue=37&rft.spage=e2101128&rft.epage=n/a&rft.pages=e2101128-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101128&rft_dat=%3Cproquest_hal_p%3E2572201338%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572201338&rft_id=info:pmid/&rfr_iscdi=true |