A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform

Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-09, Vol.33 (37), p.e2101128-n/a
Hauptverfasser: Cao, Yu, Tan, Siew Li, Cheung, Eric Jun Hao, Siew, Shawn Yohanes, Li, Changjian, Liu, Yan, Tang, Chi Sin, Lal, Manohar, Chen, Guanyu, Dogheche, Karim, Yang, Ping, Pennycook, Steven, Wee, Andrew Thye Shen, Chua, Soojin, Dogheche, Elhadj, Venkatesan, Thirumalai, Danner, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page e2101128
container_title Advanced materials (Weinheim)
container_volume 33
creator Cao, Yu
Tan, Siew Li
Cheung, Eric Jun Hao
Siew, Shawn Yohanes
Li, Changjian
Liu, Yan
Tang, Chi Sin
Lal, Manohar
Chen, Guanyu
Dogheche, Karim
Yang, Ping
Pennycook, Steven
Wee, Andrew Thye Shen
Chua, Soojin
Dogheche, Elhadj
Venkatesan, Thirumalai
Danner, Aaron
description Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 times stronger r‐parameter and would ordinarily be a more attractive material choice for such modulators or other applications. In practice, barium titanate thin films for optical waveguide devices are usually grown on magnesium oxide due to its low refractive index, allowing vertical mode confinement. However, the crystal quality is normally degraded. Here, a group of scandate‐based substrates with small lattice mismatch and low refractive index compared to that of barium titanate is identified, thus concurrently satisfying high crystal quality and vertical optical mode confinement. This work provides a platform for nonlinear on‐chip optoelectronics and can be promising for waveguide‐based optical devices such as Mach–Zehnder modulators, wavelength division multiplexing, and quantum optics‐on‐chip. A barium‐titanate‐on‐insulator platform with high‐quality barium titanate single‐crystal growth and excellent vertical optical confinement is introduced. The phase‐transition temperature of barium titanate in the platform is extended to at least 700 °C, which helps to avoid difficulties in device fabrication caused by heating, such as cracking. A low propagation loss is verified in the resultant fabricated waveguide.
doi_str_mv 10.1002/adma.202101128
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03501430v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572201338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4248-dc8d28ca2c42376c5cb0f5cbb146ed826a86f55b74ca7112b193fb561413077b3</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRVcIJEKgpbZEA4XD7MuP0oRHIgWFItSr9XotHNnesGsD6fgEvpEvYUNQkGhoZjRX545mLkKnGEYYgFzKopEjAgQDxiTZQwPMCQ4ZpHwfDSClPEwjlhyiI-eWAJBGEA1QlgVX0lZ9EyyqTray05_vH6b1Zf5WFTqYtq6vZWdsMF91Rtdadda0lXLBg5dLY5tjdFDK2umTnz5Ej7c3i_EknM3vpuNsFipGWBIWKilIoiTxI40jxVUOpS85ZpEuEhLJJCo5z2OmZOwfyHFKy5xHmGEKcZzTIbrY7n2StVjZqpF2LYysxCSbiY0GlANmFF6wZ8-37Mqa5167TjSVU7quZatN7wThMeEkjSnz6NkfdGl62_pPvikCmNLEU6MtpaxxzupydwEGsUlfbNIXu_S9Id0aXqtar_-hRXZ9n_16vwCJm4g1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572201338</pqid></control><display><type>article</type><title>A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cao, Yu ; Tan, Siew Li ; Cheung, Eric Jun Hao ; Siew, Shawn Yohanes ; Li, Changjian ; Liu, Yan ; Tang, Chi Sin ; Lal, Manohar ; Chen, Guanyu ; Dogheche, Karim ; Yang, Ping ; Pennycook, Steven ; Wee, Andrew Thye Shen ; Chua, Soojin ; Dogheche, Elhadj ; Venkatesan, Thirumalai ; Danner, Aaron</creator><creatorcontrib>Cao, Yu ; Tan, Siew Li ; Cheung, Eric Jun Hao ; Siew, Shawn Yohanes ; Li, Changjian ; Liu, Yan ; Tang, Chi Sin ; Lal, Manohar ; Chen, Guanyu ; Dogheche, Karim ; Yang, Ping ; Pennycook, Steven ; Wee, Andrew Thye Shen ; Chua, Soojin ; Dogheche, Elhadj ; Venkatesan, Thirumalai ; Danner, Aaron</creatorcontrib><description>Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 times stronger r‐parameter and would ordinarily be a more attractive material choice for such modulators or other applications. In practice, barium titanate thin films for optical waveguide devices are usually grown on magnesium oxide due to its low refractive index, allowing vertical mode confinement. However, the crystal quality is normally degraded. Here, a group of scandate‐based substrates with small lattice mismatch and low refractive index compared to that of barium titanate is identified, thus concurrently satisfying high crystal quality and vertical optical mode confinement. This work provides a platform for nonlinear on‐chip optoelectronics and can be promising for waveguide‐based optical devices such as Mach–Zehnder modulators, wavelength division multiplexing, and quantum optics‐on‐chip. A barium‐titanate‐on‐insulator platform with high‐quality barium titanate single‐crystal growth and excellent vertical optical confinement is introduced. The phase‐transition temperature of barium titanate in the platform is extended to at least 700 °C, which helps to avoid difficulties in device fabrication caused by heating, such as cracking. A low propagation loss is verified in the resultant fabricated waveguide.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101128</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Barium ; Barium titanates ; barium titanate‐on‐insulators ; Communication networks ; Confinement ; Engineering Sciences ; Lithium niobates ; low loss ; Mach-Zehnder interferometers ; Magnesium oxide ; Materials science ; Modulators ; nonlinear optical materials ; Optical communication ; Optical waveguides ; Optoelectronics ; Quantum optics ; Refractivity ; Substrates ; Superconductors (materials) ; Thin films ; waveguides ; Wavelength division multiplexing</subject><ispartof>Advanced materials (Weinheim), 2021-09, Vol.33 (37), p.e2101128-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4248-dc8d28ca2c42376c5cb0f5cbb146ed826a86f55b74ca7112b193fb561413077b3</citedby><cites>FETCH-LOGICAL-c4248-dc8d28ca2c42376c5cb0f5cbb146ed826a86f55b74ca7112b193fb561413077b3</cites><orcidid>0000-0003-1314-310X ; 0000-0002-9090-9626 ; 0000-0001-9683-4584 ; 0000-0002-5779-7466 ; 0000-0002-3229-0589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101128$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101128$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03501430$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Tan, Siew Li</creatorcontrib><creatorcontrib>Cheung, Eric Jun Hao</creatorcontrib><creatorcontrib>Siew, Shawn Yohanes</creatorcontrib><creatorcontrib>Li, Changjian</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Lal, Manohar</creatorcontrib><creatorcontrib>Chen, Guanyu</creatorcontrib><creatorcontrib>Dogheche, Karim</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Pennycook, Steven</creatorcontrib><creatorcontrib>Wee, Andrew Thye Shen</creatorcontrib><creatorcontrib>Chua, Soojin</creatorcontrib><creatorcontrib>Dogheche, Elhadj</creatorcontrib><creatorcontrib>Venkatesan, Thirumalai</creatorcontrib><creatorcontrib>Danner, Aaron</creatorcontrib><title>A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform</title><title>Advanced materials (Weinheim)</title><description>Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 times stronger r‐parameter and would ordinarily be a more attractive material choice for such modulators or other applications. In practice, barium titanate thin films for optical waveguide devices are usually grown on magnesium oxide due to its low refractive index, allowing vertical mode confinement. However, the crystal quality is normally degraded. Here, a group of scandate‐based substrates with small lattice mismatch and low refractive index compared to that of barium titanate is identified, thus concurrently satisfying high crystal quality and vertical optical mode confinement. This work provides a platform for nonlinear on‐chip optoelectronics and can be promising for waveguide‐based optical devices such as Mach–Zehnder modulators, wavelength division multiplexing, and quantum optics‐on‐chip. A barium‐titanate‐on‐insulator platform with high‐quality barium titanate single‐crystal growth and excellent vertical optical confinement is introduced. The phase‐transition temperature of barium titanate in the platform is extended to at least 700 °C, which helps to avoid difficulties in device fabrication caused by heating, such as cracking. A low propagation loss is verified in the resultant fabricated waveguide.</description><subject>Barium</subject><subject>Barium titanates</subject><subject>barium titanate‐on‐insulators</subject><subject>Communication networks</subject><subject>Confinement</subject><subject>Engineering Sciences</subject><subject>Lithium niobates</subject><subject>low loss</subject><subject>Mach-Zehnder interferometers</subject><subject>Magnesium oxide</subject><subject>Materials science</subject><subject>Modulators</subject><subject>nonlinear optical materials</subject><subject>Optical communication</subject><subject>Optical waveguides</subject><subject>Optoelectronics</subject><subject>Quantum optics</subject><subject>Refractivity</subject><subject>Substrates</subject><subject>Superconductors (materials)</subject><subject>Thin films</subject><subject>waveguides</subject><subject>Wavelength division multiplexing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOw0AQRVcIJEKgpbZEA4XD7MuP0oRHIgWFItSr9XotHNnesGsD6fgEvpEvYUNQkGhoZjRX545mLkKnGEYYgFzKopEjAgQDxiTZQwPMCQ4ZpHwfDSClPEwjlhyiI-eWAJBGEA1QlgVX0lZ9EyyqTray05_vH6b1Zf5WFTqYtq6vZWdsMF91Rtdadda0lXLBg5dLY5tjdFDK2umTnz5Ej7c3i_EknM3vpuNsFipGWBIWKilIoiTxI40jxVUOpS85ZpEuEhLJJCo5z2OmZOwfyHFKy5xHmGEKcZzTIbrY7n2StVjZqpF2LYysxCSbiY0GlANmFF6wZ8-37Mqa5167TjSVU7quZatN7wThMeEkjSnz6NkfdGl62_pPvikCmNLEU6MtpaxxzupydwEGsUlfbNIXu_S9Id0aXqtar_-hRXZ9n_16vwCJm4g1</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Cao, Yu</creator><creator>Tan, Siew Li</creator><creator>Cheung, Eric Jun Hao</creator><creator>Siew, Shawn Yohanes</creator><creator>Li, Changjian</creator><creator>Liu, Yan</creator><creator>Tang, Chi Sin</creator><creator>Lal, Manohar</creator><creator>Chen, Guanyu</creator><creator>Dogheche, Karim</creator><creator>Yang, Ping</creator><creator>Pennycook, Steven</creator><creator>Wee, Andrew Thye Shen</creator><creator>Chua, Soojin</creator><creator>Dogheche, Elhadj</creator><creator>Venkatesan, Thirumalai</creator><creator>Danner, Aaron</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1314-310X</orcidid><orcidid>https://orcid.org/0000-0002-9090-9626</orcidid><orcidid>https://orcid.org/0000-0001-9683-4584</orcidid><orcidid>https://orcid.org/0000-0002-5779-7466</orcidid><orcidid>https://orcid.org/0000-0002-3229-0589</orcidid></search><sort><creationdate>20210901</creationdate><title>A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform</title><author>Cao, Yu ; Tan, Siew Li ; Cheung, Eric Jun Hao ; Siew, Shawn Yohanes ; Li, Changjian ; Liu, Yan ; Tang, Chi Sin ; Lal, Manohar ; Chen, Guanyu ; Dogheche, Karim ; Yang, Ping ; Pennycook, Steven ; Wee, Andrew Thye Shen ; Chua, Soojin ; Dogheche, Elhadj ; Venkatesan, Thirumalai ; Danner, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4248-dc8d28ca2c42376c5cb0f5cbb146ed826a86f55b74ca7112b193fb561413077b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium</topic><topic>Barium titanates</topic><topic>barium titanate‐on‐insulators</topic><topic>Communication networks</topic><topic>Confinement</topic><topic>Engineering Sciences</topic><topic>Lithium niobates</topic><topic>low loss</topic><topic>Mach-Zehnder interferometers</topic><topic>Magnesium oxide</topic><topic>Materials science</topic><topic>Modulators</topic><topic>nonlinear optical materials</topic><topic>Optical communication</topic><topic>Optical waveguides</topic><topic>Optoelectronics</topic><topic>Quantum optics</topic><topic>Refractivity</topic><topic>Substrates</topic><topic>Superconductors (materials)</topic><topic>Thin films</topic><topic>waveguides</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Tan, Siew Li</creatorcontrib><creatorcontrib>Cheung, Eric Jun Hao</creatorcontrib><creatorcontrib>Siew, Shawn Yohanes</creatorcontrib><creatorcontrib>Li, Changjian</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Lal, Manohar</creatorcontrib><creatorcontrib>Chen, Guanyu</creatorcontrib><creatorcontrib>Dogheche, Karim</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Pennycook, Steven</creatorcontrib><creatorcontrib>Wee, Andrew Thye Shen</creatorcontrib><creatorcontrib>Chua, Soojin</creatorcontrib><creatorcontrib>Dogheche, Elhadj</creatorcontrib><creatorcontrib>Venkatesan, Thirumalai</creatorcontrib><creatorcontrib>Danner, Aaron</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yu</au><au>Tan, Siew Li</au><au>Cheung, Eric Jun Hao</au><au>Siew, Shawn Yohanes</au><au>Li, Changjian</au><au>Liu, Yan</au><au>Tang, Chi Sin</au><au>Lal, Manohar</au><au>Chen, Guanyu</au><au>Dogheche, Karim</au><au>Yang, Ping</au><au>Pennycook, Steven</au><au>Wee, Andrew Thye Shen</au><au>Chua, Soojin</au><au>Dogheche, Elhadj</au><au>Venkatesan, Thirumalai</au><au>Danner, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>33</volume><issue>37</issue><spage>e2101128</spage><epage>n/a</epage><pages>e2101128-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Electro‐optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high‐speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 times stronger r‐parameter and would ordinarily be a more attractive material choice for such modulators or other applications. In practice, barium titanate thin films for optical waveguide devices are usually grown on magnesium oxide due to its low refractive index, allowing vertical mode confinement. However, the crystal quality is normally degraded. Here, a group of scandate‐based substrates with small lattice mismatch and low refractive index compared to that of barium titanate is identified, thus concurrently satisfying high crystal quality and vertical optical mode confinement. This work provides a platform for nonlinear on‐chip optoelectronics and can be promising for waveguide‐based optical devices such as Mach–Zehnder modulators, wavelength division multiplexing, and quantum optics‐on‐chip. A barium‐titanate‐on‐insulator platform with high‐quality barium titanate single‐crystal growth and excellent vertical optical confinement is introduced. The phase‐transition temperature of barium titanate in the platform is extended to at least 700 °C, which helps to avoid difficulties in device fabrication caused by heating, such as cracking. A low propagation loss is verified in the resultant fabricated waveguide.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202101128</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1314-310X</orcidid><orcidid>https://orcid.org/0000-0002-9090-9626</orcidid><orcidid>https://orcid.org/0000-0001-9683-4584</orcidid><orcidid>https://orcid.org/0000-0002-5779-7466</orcidid><orcidid>https://orcid.org/0000-0002-3229-0589</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-09, Vol.33 (37), p.e2101128-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_hal_primary_oai_HAL_hal_03501430v1
source Wiley Online Library Journals Frontfile Complete
subjects Barium
Barium titanates
barium titanate‐on‐insulators
Communication networks
Confinement
Engineering Sciences
Lithium niobates
low loss
Mach-Zehnder interferometers
Magnesium oxide
Materials science
Modulators
nonlinear optical materials
Optical communication
Optical waveguides
Optoelectronics
Quantum optics
Refractivity
Substrates
Superconductors (materials)
Thin films
waveguides
Wavelength division multiplexing
title A Barium Titanate‐on‐Oxide Insulator Optoelectronics Platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Barium%20Titanate%E2%80%90on%E2%80%90Oxide%20Insulator%20Optoelectronics%20Platform&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cao,%20Yu&rft.date=2021-09-01&rft.volume=33&rft.issue=37&rft.spage=e2101128&rft.epage=n/a&rft.pages=e2101128-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101128&rft_dat=%3Cproquest_hal_p%3E2572201338%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572201338&rft_id=info:pmid/&rfr_iscdi=true