Hybrid approach to predict the effective properties of heterogeneous materials using artificial neural networks and micromechanical models

In this article, an investigation was carried out to verify hybrid models capabilities to predict the effective properties of heterogeneous materials. A hybrid model ANN−φ is developed by combining artificial neural networks and micromechanical modeling. The homogenization approach used in this stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2022-02, Vol.123 (3), p.794-819
Hauptverfasser: Danoun, Aymen, Pruliére, Etienne, Chemisky, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 819
container_issue 3
container_start_page 794
container_title International journal for numerical methods in engineering
container_volume 123
creator Danoun, Aymen
Pruliére, Etienne
Chemisky, Yves
description In this article, an investigation was carried out to verify hybrid models capabilities to predict the effective properties of heterogeneous materials. A hybrid model ANN−φ is developed by combining artificial neural networks and micromechanical modeling. The homogenization approach used in this study is mainly based on Eshelby's inclusion problem. The ANN−φ model, once trained on an Eshelby's tensors database, showed an excellent predictive capabilities of the effective mechanical behavior and local stresses in heterogeneous materials. The obtained results with ANN−φ are compared to numerical estimations which are often costly in terms of computational time. The results presented in this work show that the developed hybrid model can provide a significant computational time saving by a factor up to 2000 for 104 phases while maintaining its accuracy and reliability.
doi_str_mv 10.1002/nme.6877
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03498851v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620242423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3277-af30f1d7470483d53106b47665fc5ca480e0fde17384352a827c117f55a44ffa3</originalsourceid><addsrcrecordid>eNp1kcFqGzEQhkVpoE5S6CMIcmkPm45W0mp9DCGpC05zSc9C1o68cr2rjbRr41foU1e2Q25lDsP88_Ezw0_IFwa3DKD83nd4W9VKfSAzBnNVQAnqI5nl1byQ85p9IpcpbQAYk8Bn5O_isIq-oWYYYjC2pWOgQ8TG25GOLVJ0Du3od5jVMGAcPSYaHG1xxBjW2GOYEu1MnrzZJjol36-pyZzzNiu0xyme2rgP8U-ipm9o520MHdrW9N7mZRca3KZrcuGyBX5-61fk9-PDy_2iWD7_-Hl_tywsL5UqjOPgWKOEAlHzRnIG1UqoqpLOSmtEDQiuQaZ4LbgsTV0qy5hyUhohnDP8inw7-7Zmq4foOxMPOhivF3dLfdSAi3ldS7Zjmb05s_n71wnTqDdhin0-T5dVCaXIxTP19Uzlt1KK6N5tGehjKjqnoo-pZLQ4o3u_xcN_Of3r6eHE_wMbHY_L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620242423</pqid></control><display><type>article</type><title>Hybrid approach to predict the effective properties of heterogeneous materials using artificial neural networks and micromechanical models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Danoun, Aymen ; Pruliére, Etienne ; Chemisky, Yves</creator><creatorcontrib>Danoun, Aymen ; Pruliére, Etienne ; Chemisky, Yves</creatorcontrib><description>In this article, an investigation was carried out to verify hybrid models capabilities to predict the effective properties of heterogeneous materials. A hybrid model ANN−φ is developed by combining artificial neural networks and micromechanical modeling. The homogenization approach used in this study is mainly based on Eshelby's inclusion problem. The ANN−φ model, once trained on an Eshelby's tensors database, showed an excellent predictive capabilities of the effective mechanical behavior and local stresses in heterogeneous materials. The obtained results with ANN−φ are compared to numerical estimations which are often costly in terms of computational time. The results presented in this work show that the developed hybrid model can provide a significant computational time saving by a factor up to 2000 for 104 phases while maintaining its accuracy and reliability.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6877</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>artificial neural network ; Artificial neural networks ; Computational efficiency ; Computing time ; effective properties ; Engineering Sciences ; Eshelby tensor ; heterogeneous materials ; homogenization ; inclusion problems ; Materials ; Mechanical properties ; Neural networks ; Tensors</subject><ispartof>International journal for numerical methods in engineering, 2022-02, Vol.123 (3), p.794-819</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3277-af30f1d7470483d53106b47665fc5ca480e0fde17384352a827c117f55a44ffa3</citedby><cites>FETCH-LOGICAL-c3277-af30f1d7470483d53106b47665fc5ca480e0fde17384352a827c117f55a44ffa3</cites><orcidid>0000-0001-6872-6842 ; 0000-0003-2238-2081 ; 0000-0002-8725-9554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6877$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6877$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03498851$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Danoun, Aymen</creatorcontrib><creatorcontrib>Pruliére, Etienne</creatorcontrib><creatorcontrib>Chemisky, Yves</creatorcontrib><title>Hybrid approach to predict the effective properties of heterogeneous materials using artificial neural networks and micromechanical models</title><title>International journal for numerical methods in engineering</title><description>In this article, an investigation was carried out to verify hybrid models capabilities to predict the effective properties of heterogeneous materials. A hybrid model ANN−φ is developed by combining artificial neural networks and micromechanical modeling. The homogenization approach used in this study is mainly based on Eshelby's inclusion problem. The ANN−φ model, once trained on an Eshelby's tensors database, showed an excellent predictive capabilities of the effective mechanical behavior and local stresses in heterogeneous materials. The obtained results with ANN−φ are compared to numerical estimations which are often costly in terms of computational time. The results presented in this work show that the developed hybrid model can provide a significant computational time saving by a factor up to 2000 for 104 phases while maintaining its accuracy and reliability.</description><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>effective properties</subject><subject>Engineering Sciences</subject><subject>Eshelby tensor</subject><subject>heterogeneous materials</subject><subject>homogenization</subject><subject>inclusion problems</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Neural networks</subject><subject>Tensors</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcFqGzEQhkVpoE5S6CMIcmkPm45W0mp9DCGpC05zSc9C1o68cr2rjbRr41foU1e2Q25lDsP88_Ezw0_IFwa3DKD83nd4W9VKfSAzBnNVQAnqI5nl1byQ85p9IpcpbQAYk8Bn5O_isIq-oWYYYjC2pWOgQ8TG25GOLVJ0Du3od5jVMGAcPSYaHG1xxBjW2GOYEu1MnrzZJjol36-pyZzzNiu0xyme2rgP8U-ipm9o520MHdrW9N7mZRca3KZrcuGyBX5-61fk9-PDy_2iWD7_-Hl_tywsL5UqjOPgWKOEAlHzRnIG1UqoqpLOSmtEDQiuQaZ4LbgsTV0qy5hyUhohnDP8inw7-7Zmq4foOxMPOhivF3dLfdSAi3ldS7Zjmb05s_n71wnTqDdhin0-T5dVCaXIxTP19Uzlt1KK6N5tGehjKjqnoo-pZLQ4o3u_xcN_Of3r6eHE_wMbHY_L</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Danoun, Aymen</creator><creator>Pruliére, Etienne</creator><creator>Chemisky, Yves</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6872-6842</orcidid><orcidid>https://orcid.org/0000-0003-2238-2081</orcidid><orcidid>https://orcid.org/0000-0002-8725-9554</orcidid></search><sort><creationdate>20220215</creationdate><title>Hybrid approach to predict the effective properties of heterogeneous materials using artificial neural networks and micromechanical models</title><author>Danoun, Aymen ; Pruliére, Etienne ; Chemisky, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3277-af30f1d7470483d53106b47665fc5ca480e0fde17384352a827c117f55a44ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>effective properties</topic><topic>Engineering Sciences</topic><topic>Eshelby tensor</topic><topic>heterogeneous materials</topic><topic>homogenization</topic><topic>inclusion problems</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Neural networks</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danoun, Aymen</creatorcontrib><creatorcontrib>Pruliére, Etienne</creatorcontrib><creatorcontrib>Chemisky, Yves</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danoun, Aymen</au><au>Pruliére, Etienne</au><au>Chemisky, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid approach to predict the effective properties of heterogeneous materials using artificial neural networks and micromechanical models</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>123</volume><issue>3</issue><spage>794</spage><epage>819</epage><pages>794-819</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>In this article, an investigation was carried out to verify hybrid models capabilities to predict the effective properties of heterogeneous materials. A hybrid model ANN−φ is developed by combining artificial neural networks and micromechanical modeling. The homogenization approach used in this study is mainly based on Eshelby's inclusion problem. The ANN−φ model, once trained on an Eshelby's tensors database, showed an excellent predictive capabilities of the effective mechanical behavior and local stresses in heterogeneous materials. The obtained results with ANN−φ are compared to numerical estimations which are often costly in terms of computational time. The results presented in this work show that the developed hybrid model can provide a significant computational time saving by a factor up to 2000 for 104 phases while maintaining its accuracy and reliability.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6877</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-6872-6842</orcidid><orcidid>https://orcid.org/0000-0003-2238-2081</orcidid><orcidid>https://orcid.org/0000-0002-8725-9554</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2022-02, Vol.123 (3), p.794-819
issn 0029-5981
1097-0207
language eng
recordid cdi_hal_primary_oai_HAL_hal_03498851v1
source Wiley Online Library Journals Frontfile Complete
subjects artificial neural network
Artificial neural networks
Computational efficiency
Computing time
effective properties
Engineering Sciences
Eshelby tensor
heterogeneous materials
homogenization
inclusion problems
Materials
Mechanical properties
Neural networks
Tensors
title Hybrid approach to predict the effective properties of heterogeneous materials using artificial neural networks and micromechanical models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20approach%20to%20predict%20the%20effective%20properties%20of%20heterogeneous%20materials%20using%20artificial%20neural%20networks%20and%20micromechanical%20models&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Danoun,%20Aymen&rft.date=2022-02-15&rft.volume=123&rft.issue=3&rft.spage=794&rft.epage=819&rft.pages=794-819&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6877&rft_dat=%3Cproquest_hal_p%3E2620242423%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620242423&rft_id=info:pmid/&rfr_iscdi=true