Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage

Pseudo-capacitive materials operating with electron-hopping as the charge transfer mechanism are elaborated by the extensive assembly of fixed redox molecules onto the surface of graphene-supported mesoporous silica film. Various physico-chemical techniques are used to characterize the resulting com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-01, Vol.366, p.137407, Article 137407
Hauptverfasser: Wang, Jianren, Vilà, Neus, Walcarius, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 137407
container_title Electrochimica acta
container_volume 366
creator Wang, Jianren
Vilà, Neus
Walcarius, Alain
description Pseudo-capacitive materials operating with electron-hopping as the charge transfer mechanism are elaborated by the extensive assembly of fixed redox molecules onto the surface of graphene-supported mesoporous silica film. Various physico-chemical techniques are used to characterize the resulting composites. The obtained GO@Fc-MS electrode (ferrocene functionalized silica film coated onto electro-exfoliated graphene) can deliver a specific capacity of 196 mC cm−2 (326 mF cm−2) at a current density of 2 mA cm−2 and a 69% capacity retention even at 3800 C, which is much better than the traditional faradic materials. The electrochemical analyses reveal the energy storage behavior of GO@Fc-MS is a fast surface-controlled redox process. The electrode can be assembled into an asymmetric device which exhibits excellent cycling stability (no noticeable fading after 10 000 cycles) and competitive energy densities (respectively 17.7 or 9.2 µWh cm−2 at power densities of 0.53 or 13.7 mW cm−2). These results open up new opportunities for pseudocapacitive materials based on electroactive inorganic frameworks bearing surface-tethered molecular redox sites with high energy storage capability. [Display omitted]
doi_str_mv 10.1016/j.electacta.2020.137407
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03493610v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620318004</els_id><sourcerecordid>2478258662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-71852d5b46127be37190790d49f78cf9d7fed3a6418eeaf264fc107f22f569f43</originalsourceid><addsrcrecordid>eNqFkc9u3CAYxFHVSt2meYYg9dSDN_wz2MdVmiaVVuqlPSMCHzYrr3HBu-2-TR-1OK5yjYQEDL8ZQIPQDSVbSqi8PWxhADubMraMsKJyJYh6gza0UbziTd2-RRtCKK-EbOR79CHnAyFESUU26O_9Yk6x2MMZcEydGYM1w3DBx-iCD-DwEXKcYoqnjHMYyukMGccRd8lMPYzF9Sc4qJ63YQbMv2CT7LK08ykt7ATJzGHs8O8w9xjWK8eqj9O0qD4m3Ieux4UCXBJTd8F5jsl08BG982bIcP1_vkI_v97_uHus9t8fvt3t9pUVTM6Vok3NXP0kJGXqCbiiLVEtcaL1qrG-dcqD40YK2gAYz6TwlhLlGfO1bL3gV-jzmtubQU8pHE266GiCftzt9aIRLlouKTnTwn5a2SnFXyfIsz7EUxrL8zQTqmF1IyUrlFopm2LOCfxLLCV6qU4f9Et1eqlOr9UV5251QvnwOUDS2QYYLbiQCq9dDK9m_AMA_qm3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478258662</pqid></control><display><type>article</type><title>Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Jianren ; Vilà, Neus ; Walcarius, Alain</creator><creatorcontrib>Wang, Jianren ; Vilà, Neus ; Walcarius, Alain</creatorcontrib><description>Pseudo-capacitive materials operating with electron-hopping as the charge transfer mechanism are elaborated by the extensive assembly of fixed redox molecules onto the surface of graphene-supported mesoporous silica film. Various physico-chemical techniques are used to characterize the resulting composites. The obtained GO@Fc-MS electrode (ferrocene functionalized silica film coated onto electro-exfoliated graphene) can deliver a specific capacity of 196 mC cm−2 (326 mF cm−2) at a current density of 2 mA cm−2 and a 69% capacity retention even at 3800 C, which is much better than the traditional faradic materials. The electrochemical analyses reveal the energy storage behavior of GO@Fc-MS is a fast surface-controlled redox process. The electrode can be assembled into an asymmetric device which exhibits excellent cycling stability (no noticeable fading after 10 000 cycles) and competitive energy densities (respectively 17.7 or 9.2 µWh cm−2 at power densities of 0.53 or 13.7 mW cm−2). These results open up new opportunities for pseudocapacitive materials based on electroactive inorganic frameworks bearing surface-tethered molecular redox sites with high energy storage capability. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137407</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Charge transfer ; Chemical Sciences ; Coated electrodes ; Electrodes ; Electron hopping ; Energy storage ; Energy storage material ; Ferrocene ; Graphene ; Graphene oxide electrode ; Redox-active mesoporous silica film ; Silicates ; Silicon dioxide</subject><ispartof>Electrochimica acta, 2021-01, Vol.366, p.137407, Article 137407</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jan 10, 2021</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-71852d5b46127be37190790d49f78cf9d7fed3a6418eeaf264fc107f22f569f43</citedby><cites>FETCH-LOGICAL-c426t-71852d5b46127be37190790d49f78cf9d7fed3a6418eeaf264fc107f22f569f43</cites><orcidid>0000-0003-1504-2513 ; 0000-0003-3633-200X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468620318004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03493610$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jianren</creatorcontrib><creatorcontrib>Vilà, Neus</creatorcontrib><creatorcontrib>Walcarius, Alain</creatorcontrib><title>Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage</title><title>Electrochimica acta</title><description>Pseudo-capacitive materials operating with electron-hopping as the charge transfer mechanism are elaborated by the extensive assembly of fixed redox molecules onto the surface of graphene-supported mesoporous silica film. Various physico-chemical techniques are used to characterize the resulting composites. The obtained GO@Fc-MS electrode (ferrocene functionalized silica film coated onto electro-exfoliated graphene) can deliver a specific capacity of 196 mC cm−2 (326 mF cm−2) at a current density of 2 mA cm−2 and a 69% capacity retention even at 3800 C, which is much better than the traditional faradic materials. The electrochemical analyses reveal the energy storage behavior of GO@Fc-MS is a fast surface-controlled redox process. The electrode can be assembled into an asymmetric device which exhibits excellent cycling stability (no noticeable fading after 10 000 cycles) and competitive energy densities (respectively 17.7 or 9.2 µWh cm−2 at power densities of 0.53 or 13.7 mW cm−2). These results open up new opportunities for pseudocapacitive materials based on electroactive inorganic frameworks bearing surface-tethered molecular redox sites with high energy storage capability. [Display omitted]</description><subject>Charge transfer</subject><subject>Chemical Sciences</subject><subject>Coated electrodes</subject><subject>Electrodes</subject><subject>Electron hopping</subject><subject>Energy storage</subject><subject>Energy storage material</subject><subject>Ferrocene</subject><subject>Graphene</subject><subject>Graphene oxide electrode</subject><subject>Redox-active mesoporous silica film</subject><subject>Silicates</subject><subject>Silicon dioxide</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u3CAYxFHVSt2meYYg9dSDN_wz2MdVmiaVVuqlPSMCHzYrr3HBu-2-TR-1OK5yjYQEDL8ZQIPQDSVbSqi8PWxhADubMraMsKJyJYh6gza0UbziTd2-RRtCKK-EbOR79CHnAyFESUU26O_9Yk6x2MMZcEydGYM1w3DBx-iCD-DwEXKcYoqnjHMYyukMGccRd8lMPYzF9Sc4qJ63YQbMv2CT7LK08ykt7ATJzGHs8O8w9xjWK8eqj9O0qD4m3Ieux4UCXBJTd8F5jsl08BG982bIcP1_vkI_v97_uHus9t8fvt3t9pUVTM6Vok3NXP0kJGXqCbiiLVEtcaL1qrG-dcqD40YK2gAYz6TwlhLlGfO1bL3gV-jzmtubQU8pHE266GiCftzt9aIRLlouKTnTwn5a2SnFXyfIsz7EUxrL8zQTqmF1IyUrlFopm2LOCfxLLCV6qU4f9Et1eqlOr9UV5251QvnwOUDS2QYYLbiQCq9dDK9m_AMA_qm3</recordid><startdate>20210110</startdate><enddate>20210110</enddate><creator>Wang, Jianren</creator><creator>Vilà, Neus</creator><creator>Walcarius, Alain</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1504-2513</orcidid><orcidid>https://orcid.org/0000-0003-3633-200X</orcidid></search><sort><creationdate>20210110</creationdate><title>Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage</title><author>Wang, Jianren ; Vilà, Neus ; Walcarius, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-71852d5b46127be37190790d49f78cf9d7fed3a6418eeaf264fc107f22f569f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>Chemical Sciences</topic><topic>Coated electrodes</topic><topic>Electrodes</topic><topic>Electron hopping</topic><topic>Energy storage</topic><topic>Energy storage material</topic><topic>Ferrocene</topic><topic>Graphene</topic><topic>Graphene oxide electrode</topic><topic>Redox-active mesoporous silica film</topic><topic>Silicates</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianren</creatorcontrib><creatorcontrib>Vilà, Neus</creatorcontrib><creatorcontrib>Walcarius, Alain</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianren</au><au>Vilà, Neus</au><au>Walcarius, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage</atitle><jtitle>Electrochimica acta</jtitle><date>2021-01-10</date><risdate>2021</risdate><volume>366</volume><spage>137407</spage><pages>137407-</pages><artnum>137407</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Pseudo-capacitive materials operating with electron-hopping as the charge transfer mechanism are elaborated by the extensive assembly of fixed redox molecules onto the surface of graphene-supported mesoporous silica film. Various physico-chemical techniques are used to characterize the resulting composites. The obtained GO@Fc-MS electrode (ferrocene functionalized silica film coated onto electro-exfoliated graphene) can deliver a specific capacity of 196 mC cm−2 (326 mF cm−2) at a current density of 2 mA cm−2 and a 69% capacity retention even at 3800 C, which is much better than the traditional faradic materials. The electrochemical analyses reveal the energy storage behavior of GO@Fc-MS is a fast surface-controlled redox process. The electrode can be assembled into an asymmetric device which exhibits excellent cycling stability (no noticeable fading after 10 000 cycles) and competitive energy densities (respectively 17.7 or 9.2 µWh cm−2 at power densities of 0.53 or 13.7 mW cm−2). These results open up new opportunities for pseudocapacitive materials based on electroactive inorganic frameworks bearing surface-tethered molecular redox sites with high energy storage capability. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137407</doi><orcidid>https://orcid.org/0000-0003-1504-2513</orcidid><orcidid>https://orcid.org/0000-0003-3633-200X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-01, Vol.366, p.137407, Article 137407
issn 0013-4686
1873-3859
language eng
recordid cdi_hal_primary_oai_HAL_hal_03493610v1
source Elsevier ScienceDirect Journals
subjects Charge transfer
Chemical Sciences
Coated electrodes
Electrodes
Electron hopping
Energy storage
Energy storage material
Ferrocene
Graphene
Graphene oxide electrode
Redox-active mesoporous silica film
Silicates
Silicon dioxide
title Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroactive%20organically%20modified%20mesoporous%20silicates%20on%20graphene%20oxide-graphite%203D%20architectures%20operating%20with%20electron-hopping%20for%20high%20rate%20energy%20storage&rft.jtitle=Electrochimica%20acta&rft.au=Wang,%20Jianren&rft.date=2021-01-10&rft.volume=366&rft.spage=137407&rft.pages=137407-&rft.artnum=137407&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137407&rft_dat=%3Cproquest_hal_p%3E2478258662%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478258662&rft_id=info:pmid/&rft_els_id=S0013468620318004&rfr_iscdi=true