Design of tethered bilayer lipid membranes, using wet chemistry via aryldiazonium sulfonic acid spontaneous grafting on silicon and chrome

[Display omitted] •Bilayer lipid membranes are tethered to wafers via simple surfactants wet chemistry.•Solid supported single biomembrane sensors obtained from wet chemistry on Si and Cr.•Grafted commercial surfactants are anchor-harpoon molecules for biomembranes on solid.•Aryldiazonium salt wet c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2021-01, Vol.197, p.111427-111427, Article 111427
Hauptverfasser: Squillace, Ophélie, Perrault, Thomas, Gorczynska, Magdalena, Caruana, Andrew, Bajorek, Anna, Brotons, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111427
container_issue
container_start_page 111427
container_title Colloids and surfaces, B, Biointerfaces
container_volume 197
creator Squillace, Ophélie
Perrault, Thomas
Gorczynska, Magdalena
Caruana, Andrew
Bajorek, Anna
Brotons, Guillaume
description [Display omitted] •Bilayer lipid membranes are tethered to wafers via simple surfactants wet chemistry.•Solid supported single biomembrane sensors obtained from wet chemistry on Si and Cr.•Grafted commercial surfactants are anchor-harpoon molecules for biomembranes on solid.•Aryldiazonium salt wet chemistry on solids to form Brij and PEG coatings for bilayers.•XPS and neutrons probe the structure of a hydrogel cushion that supports biomembranes. We describe a bottom-up surface functionalization to design hybrid molecular coatings that tether biomembranes using wet chemistry. First, a monolayer was formed by immersion in a NH2-Ar-SO3H solution, allowing aryldiazonium salt radicals to spontaneously bind to it via strong C bonding. After formation of the air-stable and dense molecular monolayer (–Ar-SO3H), a subsequent activation was used to form highly reactive –Ar-SO2Cl groups nearly perpendicular to the monolayer. These can bind commercial surfactants, PEGylated oligomers and other inexpensive molecules via their -OH, -COOH, or -NH2 chain end-moieties, to build hybrid coatings. Metal and oxidized chromium, semi-conductor n-doped silicon (111), are the substrates tested for this protocol and the aromatic organic monolayers formed at their surface are characterized by X-ray photoelectron spectroscopy (XPS). XPS reveals unambiguously the presence of C–Cr and C–Si bonds, ensuring robustness of the coatings. Functional sulfur groups (–SO3H) cover up to 6.5×10−10 mol cm−2 of the silicon interface and 4.7×10−10 mol cm−2 of the oxidized chromium interface. These surface concentrations are comparable to the classic values obtained when the prefunctionalisation is driven by electrochemistry on conductors. Tethered lipid membranes formed on these coatings were analyzed by neutron reflectivity at the interface of functionalized n-doped silicon substrates after immersion in a solution of lipid vesicles and subsequent fusion. Results indicate a rather compact hybrid coating of Brij anchor-harpoon molecules that maintain a single lipid bilayer above the substrate, on top of a hydrated PEO cushion.
doi_str_mv 10.1016/j.colsurfb.2020.111427
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03492711v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776520307839</els_id><sourcerecordid>2458722378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-f0dbf0e9b393d31c2984021eac6e2e4f5203b4a1a8b52c303fc7a31b7a1589ae3</originalsourceid><addsrcrecordid>eNqFkctu2zAQRYmiQeOm_YWAyxaIHD4kUdo1SB8pYKCbdk3wMbRpUKJLSi7cT8hXl4aSbLsaYnDuHc5chK4pWVNC29v92sSQ5-T0mhFWmpTWTLxCK9oJXtW8Fa_RivRMVEK0zSV6m_OeEMJqKt6gS85pS1jTrdDjZ8h-O-Lo8ATTDhJYrH1QJ0g4-IO3eIBBJzVCvsFz9uMW_4EJmx0MPk_phI9eYZVOwXr1N45-HnCegysvg5Up8nyI41Tkcc54m5SbzhZxxNkHb0pVoy1uKQ7wDl04FTK8f6pX6NfXLz_vH6rNj2_f7-82lakbMlWOWO0I9Jr33HJqWN_VhFFQpgUGtWsY4bpWVHW6YYYT7oxQnGqhaNP1CvgV-rj47lSQh-SH8n0ZlZcPdxt57hFel8NReqSF_bCwhxR_z5AnWdY2EMKykWR10wnGuOgK2i6oSTHnBO7FmxJ5zkzu5XNm8pyZXDIrwuunGbMewL7InkMqwKcFgHKVo4cks_EwGrA-gZmkjf5_M_4Buy-t2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458722378</pqid></control><display><type>article</type><title>Design of tethered bilayer lipid membranes, using wet chemistry via aryldiazonium sulfonic acid spontaneous grafting on silicon and chrome</title><source>Elsevier ScienceDirect Journals</source><creator>Squillace, Ophélie ; Perrault, Thomas ; Gorczynska, Magdalena ; Caruana, Andrew ; Bajorek, Anna ; Brotons, Guillaume</creator><creatorcontrib>Squillace, Ophélie ; Perrault, Thomas ; Gorczynska, Magdalena ; Caruana, Andrew ; Bajorek, Anna ; Brotons, Guillaume</creatorcontrib><description>[Display omitted] •Bilayer lipid membranes are tethered to wafers via simple surfactants wet chemistry.•Solid supported single biomembrane sensors obtained from wet chemistry on Si and Cr.•Grafted commercial surfactants are anchor-harpoon molecules for biomembranes on solid.•Aryldiazonium salt wet chemistry on solids to form Brij and PEG coatings for bilayers.•XPS and neutrons probe the structure of a hydrogel cushion that supports biomembranes. We describe a bottom-up surface functionalization to design hybrid molecular coatings that tether biomembranes using wet chemistry. First, a monolayer was formed by immersion in a NH2-Ar-SO3H solution, allowing aryldiazonium salt radicals to spontaneously bind to it via strong C bonding. After formation of the air-stable and dense molecular monolayer (–Ar-SO3H), a subsequent activation was used to form highly reactive –Ar-SO2Cl groups nearly perpendicular to the monolayer. These can bind commercial surfactants, PEGylated oligomers and other inexpensive molecules via their -OH, -COOH, or -NH2 chain end-moieties, to build hybrid coatings. Metal and oxidized chromium, semi-conductor n-doped silicon (111), are the substrates tested for this protocol and the aromatic organic monolayers formed at their surface are characterized by X-ray photoelectron spectroscopy (XPS). XPS reveals unambiguously the presence of C–Cr and C–Si bonds, ensuring robustness of the coatings. Functional sulfur groups (–SO3H) cover up to 6.5×10−10 mol cm−2 of the silicon interface and 4.7×10−10 mol cm−2 of the oxidized chromium interface. These surface concentrations are comparable to the classic values obtained when the prefunctionalisation is driven by electrochemistry on conductors. Tethered lipid membranes formed on these coatings were analyzed by neutron reflectivity at the interface of functionalized n-doped silicon substrates after immersion in a solution of lipid vesicles and subsequent fusion. Results indicate a rather compact hybrid coating of Brij anchor-harpoon molecules that maintain a single lipid bilayer above the substrate, on top of a hydrated PEO cushion.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2020.111427</identifier><identifier>PMID: 33160258</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Anchor-Harpoon hybrid coatings to stabilize hydrated and fluid membranes ; Chemical Sciences ; Covalent polymer ultra-thin films and surfactants molecular coatings ; Planar membrane sensors ; Solid supported tethered single lipid bilayer ; Surface functionalization by covalent wet chemistry and spontaneous grafting of aryldiazonium sulfonic acid</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2021-01, Vol.197, p.111427-111427, Article 111427</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-f0dbf0e9b393d31c2984021eac6e2e4f5203b4a1a8b52c303fc7a31b7a1589ae3</citedby><cites>FETCH-LOGICAL-c450t-f0dbf0e9b393d31c2984021eac6e2e4f5203b4a1a8b52c303fc7a31b7a1589ae3</cites><orcidid>0000-0001-8481-5124 ; 0000-0001-6393-1361 ; 0000-0003-3840-5065 ; 0000-0003-3832-3932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776520307839$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33160258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03492711$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Squillace, Ophélie</creatorcontrib><creatorcontrib>Perrault, Thomas</creatorcontrib><creatorcontrib>Gorczynska, Magdalena</creatorcontrib><creatorcontrib>Caruana, Andrew</creatorcontrib><creatorcontrib>Bajorek, Anna</creatorcontrib><creatorcontrib>Brotons, Guillaume</creatorcontrib><title>Design of tethered bilayer lipid membranes, using wet chemistry via aryldiazonium sulfonic acid spontaneous grafting on silicon and chrome</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted] •Bilayer lipid membranes are tethered to wafers via simple surfactants wet chemistry.•Solid supported single biomembrane sensors obtained from wet chemistry on Si and Cr.•Grafted commercial surfactants are anchor-harpoon molecules for biomembranes on solid.•Aryldiazonium salt wet chemistry on solids to form Brij and PEG coatings for bilayers.•XPS and neutrons probe the structure of a hydrogel cushion that supports biomembranes. We describe a bottom-up surface functionalization to design hybrid molecular coatings that tether biomembranes using wet chemistry. First, a monolayer was formed by immersion in a NH2-Ar-SO3H solution, allowing aryldiazonium salt radicals to spontaneously bind to it via strong C bonding. After formation of the air-stable and dense molecular monolayer (–Ar-SO3H), a subsequent activation was used to form highly reactive –Ar-SO2Cl groups nearly perpendicular to the monolayer. These can bind commercial surfactants, PEGylated oligomers and other inexpensive molecules via their -OH, -COOH, or -NH2 chain end-moieties, to build hybrid coatings. Metal and oxidized chromium, semi-conductor n-doped silicon (111), are the substrates tested for this protocol and the aromatic organic monolayers formed at their surface are characterized by X-ray photoelectron spectroscopy (XPS). XPS reveals unambiguously the presence of C–Cr and C–Si bonds, ensuring robustness of the coatings. Functional sulfur groups (–SO3H) cover up to 6.5×10−10 mol cm−2 of the silicon interface and 4.7×10−10 mol cm−2 of the oxidized chromium interface. These surface concentrations are comparable to the classic values obtained when the prefunctionalisation is driven by electrochemistry on conductors. Tethered lipid membranes formed on these coatings were analyzed by neutron reflectivity at the interface of functionalized n-doped silicon substrates after immersion in a solution of lipid vesicles and subsequent fusion. Results indicate a rather compact hybrid coating of Brij anchor-harpoon molecules that maintain a single lipid bilayer above the substrate, on top of a hydrated PEO cushion.</description><subject>Anchor-Harpoon hybrid coatings to stabilize hydrated and fluid membranes</subject><subject>Chemical Sciences</subject><subject>Covalent polymer ultra-thin films and surfactants molecular coatings</subject><subject>Planar membrane sensors</subject><subject>Solid supported tethered single lipid bilayer</subject><subject>Surface functionalization by covalent wet chemistry and spontaneous grafting of aryldiazonium sulfonic acid</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkctu2zAQRYmiQeOm_YWAyxaIHD4kUdo1SB8pYKCbdk3wMbRpUKJLSi7cT8hXl4aSbLsaYnDuHc5chK4pWVNC29v92sSQ5-T0mhFWmpTWTLxCK9oJXtW8Fa_RivRMVEK0zSV6m_OeEMJqKt6gS85pS1jTrdDjZ8h-O-Lo8ATTDhJYrH1QJ0g4-IO3eIBBJzVCvsFz9uMW_4EJmx0MPk_phI9eYZVOwXr1N45-HnCegysvg5Up8nyI41Tkcc54m5SbzhZxxNkHb0pVoy1uKQ7wDl04FTK8f6pX6NfXLz_vH6rNj2_f7-82lakbMlWOWO0I9Jr33HJqWN_VhFFQpgUGtWsY4bpWVHW6YYYT7oxQnGqhaNP1CvgV-rj47lSQh-SH8n0ZlZcPdxt57hFel8NReqSF_bCwhxR_z5AnWdY2EMKykWR10wnGuOgK2i6oSTHnBO7FmxJ5zkzu5XNm8pyZXDIrwuunGbMewL7InkMqwKcFgHKVo4cks_EwGrA-gZmkjf5_M_4Buy-t2g</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Squillace, Ophélie</creator><creator>Perrault, Thomas</creator><creator>Gorczynska, Magdalena</creator><creator>Caruana, Andrew</creator><creator>Bajorek, Anna</creator><creator>Brotons, Guillaume</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8481-5124</orcidid><orcidid>https://orcid.org/0000-0001-6393-1361</orcidid><orcidid>https://orcid.org/0000-0003-3840-5065</orcidid><orcidid>https://orcid.org/0000-0003-3832-3932</orcidid></search><sort><creationdate>20210101</creationdate><title>Design of tethered bilayer lipid membranes, using wet chemistry via aryldiazonium sulfonic acid spontaneous grafting on silicon and chrome</title><author>Squillace, Ophélie ; Perrault, Thomas ; Gorczynska, Magdalena ; Caruana, Andrew ; Bajorek, Anna ; Brotons, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-f0dbf0e9b393d31c2984021eac6e2e4f5203b4a1a8b52c303fc7a31b7a1589ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anchor-Harpoon hybrid coatings to stabilize hydrated and fluid membranes</topic><topic>Chemical Sciences</topic><topic>Covalent polymer ultra-thin films and surfactants molecular coatings</topic><topic>Planar membrane sensors</topic><topic>Solid supported tethered single lipid bilayer</topic><topic>Surface functionalization by covalent wet chemistry and spontaneous grafting of aryldiazonium sulfonic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Squillace, Ophélie</creatorcontrib><creatorcontrib>Perrault, Thomas</creatorcontrib><creatorcontrib>Gorczynska, Magdalena</creatorcontrib><creatorcontrib>Caruana, Andrew</creatorcontrib><creatorcontrib>Bajorek, Anna</creatorcontrib><creatorcontrib>Brotons, Guillaume</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Squillace, Ophélie</au><au>Perrault, Thomas</au><au>Gorczynska, Magdalena</au><au>Caruana, Andrew</au><au>Bajorek, Anna</au><au>Brotons, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of tethered bilayer lipid membranes, using wet chemistry via aryldiazonium sulfonic acid spontaneous grafting on silicon and chrome</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>197</volume><spage>111427</spage><epage>111427</epage><pages>111427-111427</pages><artnum>111427</artnum><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted] •Bilayer lipid membranes are tethered to wafers via simple surfactants wet chemistry.•Solid supported single biomembrane sensors obtained from wet chemistry on Si and Cr.•Grafted commercial surfactants are anchor-harpoon molecules for biomembranes on solid.•Aryldiazonium salt wet chemistry on solids to form Brij and PEG coatings for bilayers.•XPS and neutrons probe the structure of a hydrogel cushion that supports biomembranes. We describe a bottom-up surface functionalization to design hybrid molecular coatings that tether biomembranes using wet chemistry. First, a monolayer was formed by immersion in a NH2-Ar-SO3H solution, allowing aryldiazonium salt radicals to spontaneously bind to it via strong C bonding. After formation of the air-stable and dense molecular monolayer (–Ar-SO3H), a subsequent activation was used to form highly reactive –Ar-SO2Cl groups nearly perpendicular to the monolayer. These can bind commercial surfactants, PEGylated oligomers and other inexpensive molecules via their -OH, -COOH, or -NH2 chain end-moieties, to build hybrid coatings. Metal and oxidized chromium, semi-conductor n-doped silicon (111), are the substrates tested for this protocol and the aromatic organic monolayers formed at their surface are characterized by X-ray photoelectron spectroscopy (XPS). XPS reveals unambiguously the presence of C–Cr and C–Si bonds, ensuring robustness of the coatings. Functional sulfur groups (–SO3H) cover up to 6.5×10−10 mol cm−2 of the silicon interface and 4.7×10−10 mol cm−2 of the oxidized chromium interface. These surface concentrations are comparable to the classic values obtained when the prefunctionalisation is driven by electrochemistry on conductors. Tethered lipid membranes formed on these coatings were analyzed by neutron reflectivity at the interface of functionalized n-doped silicon substrates after immersion in a solution of lipid vesicles and subsequent fusion. Results indicate a rather compact hybrid coating of Brij anchor-harpoon molecules that maintain a single lipid bilayer above the substrate, on top of a hydrated PEO cushion.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33160258</pmid><doi>10.1016/j.colsurfb.2020.111427</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8481-5124</orcidid><orcidid>https://orcid.org/0000-0001-6393-1361</orcidid><orcidid>https://orcid.org/0000-0003-3840-5065</orcidid><orcidid>https://orcid.org/0000-0003-3832-3932</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2021-01, Vol.197, p.111427-111427, Article 111427
issn 0927-7765
1873-4367
language eng
recordid cdi_hal_primary_oai_HAL_hal_03492711v1
source Elsevier ScienceDirect Journals
subjects Anchor-Harpoon hybrid coatings to stabilize hydrated and fluid membranes
Chemical Sciences
Covalent polymer ultra-thin films and surfactants molecular coatings
Planar membrane sensors
Solid supported tethered single lipid bilayer
Surface functionalization by covalent wet chemistry and spontaneous grafting of aryldiazonium sulfonic acid
title Design of tethered bilayer lipid membranes, using wet chemistry via aryldiazonium sulfonic acid spontaneous grafting on silicon and chrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20tethered%20bilayer%20lipid%20membranes,%20using%20wet%20chemistry%20via%20aryldiazonium%20sulfonic%20acid%20spontaneous%20grafting%20on%20silicon%20and%20chrome&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Squillace,%20Oph%C3%A9lie&rft.date=2021-01-01&rft.volume=197&rft.spage=111427&rft.epage=111427&rft.pages=111427-111427&rft.artnum=111427&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2020.111427&rft_dat=%3Cproquest_hal_p%3E2458722378%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458722378&rft_id=info:pmid/33160258&rft_els_id=S0927776520307839&rfr_iscdi=true