Wrapping axons in mammals and Drosophila: Different lipids, same principle

Plasma membranes of axon-wrapping glial cells develop specific cylindrical bilayer membranes that surround thin individual axons or axon bundles. Axons are wrapped with single layered glial cells in lower organisms whereas in the mammalian nervous system, axons are surrounded with a characteristic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimie 2020-11, Vol.178, p.39-48
Hauptverfasser: Murate, Motohide, Tomishige, Nario, Kobayashi, Toshihide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 39
container_title Biochimie
container_volume 178
creator Murate, Motohide
Tomishige, Nario
Kobayashi, Toshihide
description Plasma membranes of axon-wrapping glial cells develop specific cylindrical bilayer membranes that surround thin individual axons or axon bundles. Axons are wrapped with single layered glial cells in lower organisms whereas in the mammalian nervous system, axons are surrounded with a characteristic complex multilamellar myelin structure. The high content of lipids in myelin suggests that lipids play crucial roles in the structure and function of myelin. The most striking feature of myelin lipids is the high content of galactosylceramide (GalCer). Serological and genetic studies indicate that GalCer plays a key role in the formation and function of the myelin sheath in mammals. In contrast to mammals, Drosophila lacks GalCer. Instead of GalCer, ceramide phosphoethanolamine (CPE) has an important role to ensheath axons with glial cells in Drosophila. GalCer and CPE share similar physical properties: both lipids have a high phase transition temperature and high packing, are immiscible with cholesterol and form helical liposomes. These properties are caused by both the strong headgroup interactions and the tight packing resulting from the small size of the headgroup and the hydrogen bonds between lipid molecules. These results suggest that mammals and Drosophila wrap axons using different lipids but the same conserved principle. •Galactosylceramide plays a key role in the formation and function of the myelin sheath in mammals.•Ceramide phosphoethanolamine has an important role to ensheath axons by glial cells in Drosophila.•Galactosylceramide and ceramide phosphoethanolamine share similar physical properties.
doi_str_mv 10.1016/j.biochi.2020.08.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03492586v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300908420301796</els_id><sourcerecordid>2434758020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-7a2837221f64714a071b2977e3ca7b54c6f1a09f2d6847d76a83e66719a71a1c3</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhtRzCb6D0T6qOCM1R_b3eMhEJJolAUvisemtqfG7WW-7N4N-u_tZWKOngqK562Xehh7JaAWIMz7fb2NU9jFWoKEGlwNIJ-wlTDKVUY49ZStQAFUDTh9xs5z3gPAGmTznJ0p6QBc06zYlx8J5zmOPzn-nsbM48gHHAbsM8ex5TdpytO8iz1-4Dex6yjReOB9nGOb3_GMA_E5xTHEuacX7FlXcvTyYV6w7x9vv13fVZuvnz5fX22qoLU8VBalU1ZK0RlthUawYisba0kFtNu1DqYTCE0nW-O0ba1Bp8gYKxq0AkVQF-ztcneHvS_tA6Y_fsLo7642_rQDpRu5duZeFPbNws5p-nWkfPBDzIH6HkeajtlLrbRdu2KwoHpBQ_k5J-oebwvwJ-N-7xfj_mTcg_PFeIm9fmg4bgdqH0P_FBfgcgGoOLmPlHwOkcZAbUwUDr6d4v8b_gLF5ZEn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434758020</pqid></control><display><type>article</type><title>Wrapping axons in mammals and Drosophila: Different lipids, same principle</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Murate, Motohide ; Tomishige, Nario ; Kobayashi, Toshihide</creator><creatorcontrib>Murate, Motohide ; Tomishige, Nario ; Kobayashi, Toshihide</creatorcontrib><description>Plasma membranes of axon-wrapping glial cells develop specific cylindrical bilayer membranes that surround thin individual axons or axon bundles. Axons are wrapped with single layered glial cells in lower organisms whereas in the mammalian nervous system, axons are surrounded with a characteristic complex multilamellar myelin structure. The high content of lipids in myelin suggests that lipids play crucial roles in the structure and function of myelin. The most striking feature of myelin lipids is the high content of galactosylceramide (GalCer). Serological and genetic studies indicate that GalCer plays a key role in the formation and function of the myelin sheath in mammals. In contrast to mammals, Drosophila lacks GalCer. Instead of GalCer, ceramide phosphoethanolamine (CPE) has an important role to ensheath axons with glial cells in Drosophila. GalCer and CPE share similar physical properties: both lipids have a high phase transition temperature and high packing, are immiscible with cholesterol and form helical liposomes. These properties are caused by both the strong headgroup interactions and the tight packing resulting from the small size of the headgroup and the hydrogen bonds between lipid molecules. These results suggest that mammals and Drosophila wrap axons using different lipids but the same conserved principle. •Galactosylceramide plays a key role in the formation and function of the myelin sheath in mammals.•Ceramide phosphoethanolamine has an important role to ensheath axons by glial cells in Drosophila.•Galactosylceramide and ceramide phosphoethanolamine share similar physical properties.</description><identifier>ISSN: 0300-9084</identifier><identifier>EISSN: 1638-6183</identifier><identifier>DOI: 10.1016/j.biochi.2020.08.002</identifier><identifier>PMID: 32800899</identifier><language>eng</language><publisher>France: Elsevier B.V</publisher><subject>Animals ; Axons - chemistry ; Axons - metabolism ; Ceramide phosphoethanolamine ; Drosophila melanogaster - metabolism ; Galactosylceramide ; Galactosylceramides - chemistry ; Galactosylceramides - metabolism ; Glial ensheathment ; Glucosylceramides - chemistry ; Glucosylceramides - metabolism ; Humans ; Life Sciences ; Lipid Metabolism ; Lipids - chemistry ; Mammals - metabolism ; Myelin ; Sphingomyelins - chemistry ; Sphingomyelins - metabolism</subject><ispartof>Biochimie, 2020-11, Vol.178, p.39-48</ispartof><rights>2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM)</rights><rights>Copyright © 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-7a2837221f64714a071b2977e3ca7b54c6f1a09f2d6847d76a83e66719a71a1c3</citedby><cites>FETCH-LOGICAL-c442t-7a2837221f64714a071b2977e3ca7b54c6f1a09f2d6847d76a83e66719a71a1c3</cites><orcidid>0000-0001-5715-7947 ; 0000-0002-1266-5400 ; 0000-0002-4811-7270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0300908420301796$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32800899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03492586$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Murate, Motohide</creatorcontrib><creatorcontrib>Tomishige, Nario</creatorcontrib><creatorcontrib>Kobayashi, Toshihide</creatorcontrib><title>Wrapping axons in mammals and Drosophila: Different lipids, same principle</title><title>Biochimie</title><addtitle>Biochimie</addtitle><description>Plasma membranes of axon-wrapping glial cells develop specific cylindrical bilayer membranes that surround thin individual axons or axon bundles. Axons are wrapped with single layered glial cells in lower organisms whereas in the mammalian nervous system, axons are surrounded with a characteristic complex multilamellar myelin structure. The high content of lipids in myelin suggests that lipids play crucial roles in the structure and function of myelin. The most striking feature of myelin lipids is the high content of galactosylceramide (GalCer). Serological and genetic studies indicate that GalCer plays a key role in the formation and function of the myelin sheath in mammals. In contrast to mammals, Drosophila lacks GalCer. Instead of GalCer, ceramide phosphoethanolamine (CPE) has an important role to ensheath axons with glial cells in Drosophila. GalCer and CPE share similar physical properties: both lipids have a high phase transition temperature and high packing, are immiscible with cholesterol and form helical liposomes. These properties are caused by both the strong headgroup interactions and the tight packing resulting from the small size of the headgroup and the hydrogen bonds between lipid molecules. These results suggest that mammals and Drosophila wrap axons using different lipids but the same conserved principle. •Galactosylceramide plays a key role in the formation and function of the myelin sheath in mammals.•Ceramide phosphoethanolamine has an important role to ensheath axons by glial cells in Drosophila.•Galactosylceramide and ceramide phosphoethanolamine share similar physical properties.</description><subject>Animals</subject><subject>Axons - chemistry</subject><subject>Axons - metabolism</subject><subject>Ceramide phosphoethanolamine</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Galactosylceramide</subject><subject>Galactosylceramides - chemistry</subject><subject>Galactosylceramides - metabolism</subject><subject>Glial ensheathment</subject><subject>Glucosylceramides - chemistry</subject><subject>Glucosylceramides - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lipid Metabolism</subject><subject>Lipids - chemistry</subject><subject>Mammals - metabolism</subject><subject>Myelin</subject><subject>Sphingomyelins - chemistry</subject><subject>Sphingomyelins - metabolism</subject><issn>0300-9084</issn><issn>1638-6183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1rFEEQhhtRzCb6D0T6qOCM1R_b3eMhEJJolAUvisemtqfG7WW-7N4N-u_tZWKOngqK562Xehh7JaAWIMz7fb2NU9jFWoKEGlwNIJ-wlTDKVUY49ZStQAFUDTh9xs5z3gPAGmTznJ0p6QBc06zYlx8J5zmOPzn-nsbM48gHHAbsM8ex5TdpytO8iz1-4Dex6yjReOB9nGOb3_GMA_E5xTHEuacX7FlXcvTyYV6w7x9vv13fVZuvnz5fX22qoLU8VBalU1ZK0RlthUawYisba0kFtNu1DqYTCE0nW-O0ba1Bp8gYKxq0AkVQF-ztcneHvS_tA6Y_fsLo7642_rQDpRu5duZeFPbNws5p-nWkfPBDzIH6HkeajtlLrbRdu2KwoHpBQ_k5J-oebwvwJ-N-7xfj_mTcg_PFeIm9fmg4bgdqH0P_FBfgcgGoOLmPlHwOkcZAbUwUDr6d4v8b_gLF5ZEn</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Murate, Motohide</creator><creator>Tomishige, Nario</creator><creator>Kobayashi, Toshihide</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5715-7947</orcidid><orcidid>https://orcid.org/0000-0002-1266-5400</orcidid><orcidid>https://orcid.org/0000-0002-4811-7270</orcidid></search><sort><creationdate>20201101</creationdate><title>Wrapping axons in mammals and Drosophila: Different lipids, same principle</title><author>Murate, Motohide ; Tomishige, Nario ; Kobayashi, Toshihide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-7a2837221f64714a071b2977e3ca7b54c6f1a09f2d6847d76a83e66719a71a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Axons - chemistry</topic><topic>Axons - metabolism</topic><topic>Ceramide phosphoethanolamine</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Galactosylceramide</topic><topic>Galactosylceramides - chemistry</topic><topic>Galactosylceramides - metabolism</topic><topic>Glial ensheathment</topic><topic>Glucosylceramides - chemistry</topic><topic>Glucosylceramides - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lipid Metabolism</topic><topic>Lipids - chemistry</topic><topic>Mammals - metabolism</topic><topic>Myelin</topic><topic>Sphingomyelins - chemistry</topic><topic>Sphingomyelins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murate, Motohide</creatorcontrib><creatorcontrib>Tomishige, Nario</creatorcontrib><creatorcontrib>Kobayashi, Toshihide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biochimie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murate, Motohide</au><au>Tomishige, Nario</au><au>Kobayashi, Toshihide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wrapping axons in mammals and Drosophila: Different lipids, same principle</atitle><jtitle>Biochimie</jtitle><addtitle>Biochimie</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>178</volume><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>0300-9084</issn><eissn>1638-6183</eissn><abstract>Plasma membranes of axon-wrapping glial cells develop specific cylindrical bilayer membranes that surround thin individual axons or axon bundles. Axons are wrapped with single layered glial cells in lower organisms whereas in the mammalian nervous system, axons are surrounded with a characteristic complex multilamellar myelin structure. The high content of lipids in myelin suggests that lipids play crucial roles in the structure and function of myelin. The most striking feature of myelin lipids is the high content of galactosylceramide (GalCer). Serological and genetic studies indicate that GalCer plays a key role in the formation and function of the myelin sheath in mammals. In contrast to mammals, Drosophila lacks GalCer. Instead of GalCer, ceramide phosphoethanolamine (CPE) has an important role to ensheath axons with glial cells in Drosophila. GalCer and CPE share similar physical properties: both lipids have a high phase transition temperature and high packing, are immiscible with cholesterol and form helical liposomes. These properties are caused by both the strong headgroup interactions and the tight packing resulting from the small size of the headgroup and the hydrogen bonds between lipid molecules. These results suggest that mammals and Drosophila wrap axons using different lipids but the same conserved principle. •Galactosylceramide plays a key role in the formation and function of the myelin sheath in mammals.•Ceramide phosphoethanolamine has an important role to ensheath axons by glial cells in Drosophila.•Galactosylceramide and ceramide phosphoethanolamine share similar physical properties.</abstract><cop>France</cop><pub>Elsevier B.V</pub><pmid>32800899</pmid><doi>10.1016/j.biochi.2020.08.002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5715-7947</orcidid><orcidid>https://orcid.org/0000-0002-1266-5400</orcidid><orcidid>https://orcid.org/0000-0002-4811-7270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0300-9084
ispartof Biochimie, 2020-11, Vol.178, p.39-48
issn 0300-9084
1638-6183
language eng
recordid cdi_hal_primary_oai_HAL_hal_03492586v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Axons - chemistry
Axons - metabolism
Ceramide phosphoethanolamine
Drosophila melanogaster - metabolism
Galactosylceramide
Galactosylceramides - chemistry
Galactosylceramides - metabolism
Glial ensheathment
Glucosylceramides - chemistry
Glucosylceramides - metabolism
Humans
Life Sciences
Lipid Metabolism
Lipids - chemistry
Mammals - metabolism
Myelin
Sphingomyelins - chemistry
Sphingomyelins - metabolism
title Wrapping axons in mammals and Drosophila: Different lipids, same principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wrapping%20axons%20in%20mammals%20and%20Drosophila:%20Different%20lipids,%20same%20principle&rft.jtitle=Biochimie&rft.au=Murate,%20Motohide&rft.date=2020-11-01&rft.volume=178&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=0300-9084&rft.eissn=1638-6183&rft_id=info:doi/10.1016/j.biochi.2020.08.002&rft_dat=%3Cproquest_hal_p%3E2434758020%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434758020&rft_id=info:pmid/32800899&rft_els_id=S0300908420301796&rfr_iscdi=true