Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis

To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diagnostic and interventional imaging 2020-06, Vol.101 (6), p.401-411
Hauptverfasser: Bereby-Kahane, M., Dautry, R., Matzner-Lober, E., Cornelis, F., Sebbag-Sfez, D., Place, V., Mezzadri, M., Soyer, P., Dohan, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 6
container_start_page 401
container_title Diagnostic and interventional imaging
container_volume 101
creator Bereby-Kahane, M.
Dautry, R.
Matzner-Lober, E.
Cornelis, F.
Sebbag-Sfez, D.
Place, V.
Mezzadri, M.
Soyer, P.
Dohan, A.
description To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma. Seventy-three women (mean age: 66±11.5 [SD] years; range: 45–88 years) with endometrial adenocarcinoma who underwent MRI of the pelvis at 1.5-T before hysterectomy were retrospectively included. Texture analysis was performed using TexRAD® software on T2-weighted images and ADC maps. Primary outcomes were high-grade and LVSI prediction using histopathological analysis as standard of reference. After data reduction using ascending hierarchical classification analysis, a predictive model was obtained by stepwise multivariate logistic regression and performances were assessed using cross-validated receiver operator curve (ROC). A total of 72 texture features per tumor were computed. Texture model yielded 52% sensitivity and 75% specificity for the diagnosis of high-grade tumor (areas under ROC curve [AUC]=0.64) and 71% sensitivity and 59% specificity for the diagnosis of LVSI (AUC=0.59). Volumes and tumor short axis were greater for high-grade tumors (P=0.0002 and P=0.004, respectively) and for patients with LVSI (P=0.004 and P=0.0279, respectively). No differences in ADC values were found between high-grade and low-grade tumors and for LVSI. A tumor short axis≥20mm yielded 95% sensitivity and 75% specificity for the diagnosis of high-grade tumor (AUC=0.86). MRI-based texture analysis is of limited value to predict high grade and LVSI of endometrial adenocarcinoma. A tumor short axis≥20mm is the best predictor of high grade and LVSI.
doi_str_mv 10.1016/j.diii.2020.01.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03491056v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211568420300048</els_id><sourcerecordid>2353017922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-1c47061eb60c1ef0d335c8f51b49c6ecc050f352199ba7c1f0b8f4e827b103793</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EolXpC7BAXsIi4drOr8SmqoBWGgRCsLYc52bmjhJ7sJNBs-TNcTRtxQpvbF1935Htw9hrAbkAUb3f5z0R5RIk5CByAPWMXUopRFZWTfH8n_MFu45xD2lVqVgUL9mFkqBq2bSX7M-3gD3ZmbzjfuDzMvnAt8H0yI3r-XiaDjt_NNEuowk8HoxFTi4N1gI5jq73E86BzMhTyXlrgiXnJ8N_07zjX75zmsyW3DbrTMSeJzT5iWzCm_EUKb5iLwYzRrx-2K_Yz08ff9zeZZuvn-9vbzaZLVQxZ8IWNVQCuwqswAF6pUrbDKXoitZWaC2UMKhSirbtTG3FAF0zFNjIuhPpsa26Yu_O3J0Z9SGkW4WT9ob03c1GrzNQRSugrI4iZd-es4fgfy0YZz1RtDiOxqFfopaqVCDqVsoUleeoDT7GgMMTW4BeTem9Xk3p1ZQGoZOpVHrzwF-6CfunyqOXFPhwDmD6kSNh0NESOptcBbSz7j39j_8X7jelUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353017922</pqid></control><display><type>article</type><title>Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bereby-Kahane, M. ; Dautry, R. ; Matzner-Lober, E. ; Cornelis, F. ; Sebbag-Sfez, D. ; Place, V. ; Mezzadri, M. ; Soyer, P. ; Dohan, A.</creator><creatorcontrib>Bereby-Kahane, M. ; Dautry, R. ; Matzner-Lober, E. ; Cornelis, F. ; Sebbag-Sfez, D. ; Place, V. ; Mezzadri, M. ; Soyer, P. ; Dohan, A.</creatorcontrib><description>To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma. Seventy-three women (mean age: 66±11.5 [SD] years; range: 45–88 years) with endometrial adenocarcinoma who underwent MRI of the pelvis at 1.5-T before hysterectomy were retrospectively included. Texture analysis was performed using TexRAD® software on T2-weighted images and ADC maps. Primary outcomes were high-grade and LVSI prediction using histopathological analysis as standard of reference. After data reduction using ascending hierarchical classification analysis, a predictive model was obtained by stepwise multivariate logistic regression and performances were assessed using cross-validated receiver operator curve (ROC). A total of 72 texture features per tumor were computed. Texture model yielded 52% sensitivity and 75% specificity for the diagnosis of high-grade tumor (areas under ROC curve [AUC]=0.64) and 71% sensitivity and 59% specificity for the diagnosis of LVSI (AUC=0.59). Volumes and tumor short axis were greater for high-grade tumors (P=0.0002 and P=0.004, respectively) and for patients with LVSI (P=0.004 and P=0.0279, respectively). No differences in ADC values were found between high-grade and low-grade tumors and for LVSI. A tumor short axis≥20mm yielded 95% sensitivity and 75% specificity for the diagnosis of high-grade tumor (AUC=0.86). MRI-based texture analysis is of limited value to predict high grade and LVSI of endometrial adenocarcinoma. A tumor short axis≥20mm is the best predictor of high grade and LVSI.</description><identifier>ISSN: 2211-5684</identifier><identifier>EISSN: 2211-5684</identifier><identifier>DOI: 10.1016/j.diii.2020.01.003</identifier><identifier>PMID: 32037289</identifier><language>eng</language><publisher>France: Elsevier Masson SAS</publisher><subject>Endometrial adenocarcinoma ; Life Sciences ; Lymphovascular space invasion ; Magnetic resonance imaging (MRI) ; Radiomic analysis ; Texture analysis</subject><ispartof>Diagnostic and interventional imaging, 2020-06, Vol.101 (6), p.401-411</ispartof><rights>2020 Société française de radiologie</rights><rights>Copyright © 2020 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-1c47061eb60c1ef0d335c8f51b49c6ecc050f352199ba7c1f0b8f4e827b103793</citedby><cites>FETCH-LOGICAL-c434t-1c47061eb60c1ef0d335c8f51b49c6ecc050f352199ba7c1f0b8f4e827b103793</cites><orcidid>0000-0002-0760-3686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32037289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03491056$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bereby-Kahane, M.</creatorcontrib><creatorcontrib>Dautry, R.</creatorcontrib><creatorcontrib>Matzner-Lober, E.</creatorcontrib><creatorcontrib>Cornelis, F.</creatorcontrib><creatorcontrib>Sebbag-Sfez, D.</creatorcontrib><creatorcontrib>Place, V.</creatorcontrib><creatorcontrib>Mezzadri, M.</creatorcontrib><creatorcontrib>Soyer, P.</creatorcontrib><creatorcontrib>Dohan, A.</creatorcontrib><title>Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis</title><title>Diagnostic and interventional imaging</title><addtitle>Diagn Interv Imaging</addtitle><description>To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma. Seventy-three women (mean age: 66±11.5 [SD] years; range: 45–88 years) with endometrial adenocarcinoma who underwent MRI of the pelvis at 1.5-T before hysterectomy were retrospectively included. Texture analysis was performed using TexRAD® software on T2-weighted images and ADC maps. Primary outcomes were high-grade and LVSI prediction using histopathological analysis as standard of reference. After data reduction using ascending hierarchical classification analysis, a predictive model was obtained by stepwise multivariate logistic regression and performances were assessed using cross-validated receiver operator curve (ROC). A total of 72 texture features per tumor were computed. Texture model yielded 52% sensitivity and 75% specificity for the diagnosis of high-grade tumor (areas under ROC curve [AUC]=0.64) and 71% sensitivity and 59% specificity for the diagnosis of LVSI (AUC=0.59). Volumes and tumor short axis were greater for high-grade tumors (P=0.0002 and P=0.004, respectively) and for patients with LVSI (P=0.004 and P=0.0279, respectively). No differences in ADC values were found between high-grade and low-grade tumors and for LVSI. A tumor short axis≥20mm yielded 95% sensitivity and 75% specificity for the diagnosis of high-grade tumor (AUC=0.86). MRI-based texture analysis is of limited value to predict high grade and LVSI of endometrial adenocarcinoma. A tumor short axis≥20mm is the best predictor of high grade and LVSI.</description><subject>Endometrial adenocarcinoma</subject><subject>Life Sciences</subject><subject>Lymphovascular space invasion</subject><subject>Magnetic resonance imaging (MRI)</subject><subject>Radiomic analysis</subject><subject>Texture analysis</subject><issn>2211-5684</issn><issn>2211-5684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EolXpC7BAXsIi4drOr8SmqoBWGgRCsLYc52bmjhJ7sJNBs-TNcTRtxQpvbF1935Htw9hrAbkAUb3f5z0R5RIk5CByAPWMXUopRFZWTfH8n_MFu45xD2lVqVgUL9mFkqBq2bSX7M-3gD3ZmbzjfuDzMvnAt8H0yI3r-XiaDjt_NNEuowk8HoxFTi4N1gI5jq73E86BzMhTyXlrgiXnJ8N_07zjX75zmsyW3DbrTMSeJzT5iWzCm_EUKb5iLwYzRrx-2K_Yz08ff9zeZZuvn-9vbzaZLVQxZ8IWNVQCuwqswAF6pUrbDKXoitZWaC2UMKhSirbtTG3FAF0zFNjIuhPpsa26Yu_O3J0Z9SGkW4WT9ob03c1GrzNQRSugrI4iZd-es4fgfy0YZz1RtDiOxqFfopaqVCDqVsoUleeoDT7GgMMTW4BeTem9Xk3p1ZQGoZOpVHrzwF-6CfunyqOXFPhwDmD6kSNh0NESOptcBbSz7j39j_8X7jelUA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Bereby-Kahane, M.</creator><creator>Dautry, R.</creator><creator>Matzner-Lober, E.</creator><creator>Cornelis, F.</creator><creator>Sebbag-Sfez, D.</creator><creator>Place, V.</creator><creator>Mezzadri, M.</creator><creator>Soyer, P.</creator><creator>Dohan, A.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0760-3686</orcidid></search><sort><creationdate>20200601</creationdate><title>Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis</title><author>Bereby-Kahane, M. ; Dautry, R. ; Matzner-Lober, E. ; Cornelis, F. ; Sebbag-Sfez, D. ; Place, V. ; Mezzadri, M. ; Soyer, P. ; Dohan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-1c47061eb60c1ef0d335c8f51b49c6ecc050f352199ba7c1f0b8f4e827b103793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Endometrial adenocarcinoma</topic><topic>Life Sciences</topic><topic>Lymphovascular space invasion</topic><topic>Magnetic resonance imaging (MRI)</topic><topic>Radiomic analysis</topic><topic>Texture analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bereby-Kahane, M.</creatorcontrib><creatorcontrib>Dautry, R.</creatorcontrib><creatorcontrib>Matzner-Lober, E.</creatorcontrib><creatorcontrib>Cornelis, F.</creatorcontrib><creatorcontrib>Sebbag-Sfez, D.</creatorcontrib><creatorcontrib>Place, V.</creatorcontrib><creatorcontrib>Mezzadri, M.</creatorcontrib><creatorcontrib>Soyer, P.</creatorcontrib><creatorcontrib>Dohan, A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Diagnostic and interventional imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bereby-Kahane, M.</au><au>Dautry, R.</au><au>Matzner-Lober, E.</au><au>Cornelis, F.</au><au>Sebbag-Sfez, D.</au><au>Place, V.</au><au>Mezzadri, M.</au><au>Soyer, P.</au><au>Dohan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis</atitle><jtitle>Diagnostic and interventional imaging</jtitle><addtitle>Diagn Interv Imaging</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>101</volume><issue>6</issue><spage>401</spage><epage>411</epage><pages>401-411</pages><issn>2211-5684</issn><eissn>2211-5684</eissn><abstract>To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma. Seventy-three women (mean age: 66±11.5 [SD] years; range: 45–88 years) with endometrial adenocarcinoma who underwent MRI of the pelvis at 1.5-T before hysterectomy were retrospectively included. Texture analysis was performed using TexRAD® software on T2-weighted images and ADC maps. Primary outcomes were high-grade and LVSI prediction using histopathological analysis as standard of reference. After data reduction using ascending hierarchical classification analysis, a predictive model was obtained by stepwise multivariate logistic regression and performances were assessed using cross-validated receiver operator curve (ROC). A total of 72 texture features per tumor were computed. Texture model yielded 52% sensitivity and 75% specificity for the diagnosis of high-grade tumor (areas under ROC curve [AUC]=0.64) and 71% sensitivity and 59% specificity for the diagnosis of LVSI (AUC=0.59). Volumes and tumor short axis were greater for high-grade tumors (P=0.0002 and P=0.004, respectively) and for patients with LVSI (P=0.004 and P=0.0279, respectively). No differences in ADC values were found between high-grade and low-grade tumors and for LVSI. A tumor short axis≥20mm yielded 95% sensitivity and 75% specificity for the diagnosis of high-grade tumor (AUC=0.86). MRI-based texture analysis is of limited value to predict high grade and LVSI of endometrial adenocarcinoma. A tumor short axis≥20mm is the best predictor of high grade and LVSI.</abstract><cop>France</cop><pub>Elsevier Masson SAS</pub><pmid>32037289</pmid><doi>10.1016/j.diii.2020.01.003</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0760-3686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-5684
ispartof Diagnostic and interventional imaging, 2020-06, Vol.101 (6), p.401-411
issn 2211-5684
2211-5684
language eng
recordid cdi_hal_primary_oai_HAL_hal_03491056v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Endometrial adenocarcinoma
Life Sciences
Lymphovascular space invasion
Magnetic resonance imaging (MRI)
Radiomic analysis
Texture analysis
title Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20tumor%20grade%20and%20lymphovascular%20space%20invasion%20in%20endometrial%20adenocarcinoma%20with%20MR%20imaging-based%20radiomic%20analysis&rft.jtitle=Diagnostic%20and%20interventional%20imaging&rft.au=Bereby-Kahane,%20M.&rft.date=2020-06-01&rft.volume=101&rft.issue=6&rft.spage=401&rft.epage=411&rft.pages=401-411&rft.issn=2211-5684&rft.eissn=2211-5684&rft_id=info:doi/10.1016/j.diii.2020.01.003&rft_dat=%3Cproquest_hal_p%3E2353017922%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353017922&rft_id=info:pmid/32037289&rft_els_id=S2211568420300048&rfr_iscdi=true