Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis
To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma....
Gespeichert in:
Veröffentlicht in: | Diagnostic and interventional imaging 2020-06, Vol.101 (6), p.401-411 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 6 |
container_start_page | 401 |
container_title | Diagnostic and interventional imaging |
container_volume | 101 |
creator | Bereby-Kahane, M. Dautry, R. Matzner-Lober, E. Cornelis, F. Sebbag-Sfez, D. Place, V. Mezzadri, M. Soyer, P. Dohan, A. |
description | To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma.
Seventy-three women (mean age: 66±11.5 [SD] years; range: 45–88 years) with endometrial adenocarcinoma who underwent MRI of the pelvis at 1.5-T before hysterectomy were retrospectively included. Texture analysis was performed using TexRAD® software on T2-weighted images and ADC maps. Primary outcomes were high-grade and LVSI prediction using histopathological analysis as standard of reference. After data reduction using ascending hierarchical classification analysis, a predictive model was obtained by stepwise multivariate logistic regression and performances were assessed using cross-validated receiver operator curve (ROC).
A total of 72 texture features per tumor were computed. Texture model yielded 52% sensitivity and 75% specificity for the diagnosis of high-grade tumor (areas under ROC curve [AUC]=0.64) and 71% sensitivity and 59% specificity for the diagnosis of LVSI (AUC=0.59). Volumes and tumor short axis were greater for high-grade tumors (P=0.0002 and P=0.004, respectively) and for patients with LVSI (P=0.004 and P=0.0279, respectively). No differences in ADC values were found between high-grade and low-grade tumors and for LVSI. A tumor short axis≥20mm yielded 95% sensitivity and 75% specificity for the diagnosis of high-grade tumor (AUC=0.86).
MRI-based texture analysis is of limited value to predict high grade and LVSI of endometrial adenocarcinoma. A tumor short axis≥20mm is the best predictor of high grade and LVSI. |
doi_str_mv | 10.1016/j.diii.2020.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03491056v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211568420300048</els_id><sourcerecordid>2353017922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-1c47061eb60c1ef0d335c8f51b49c6ecc050f352199ba7c1f0b8f4e827b103793</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EolXpC7BAXsIi4drOr8SmqoBWGgRCsLYc52bmjhJ7sJNBs-TNcTRtxQpvbF1935Htw9hrAbkAUb3f5z0R5RIk5CByAPWMXUopRFZWTfH8n_MFu45xD2lVqVgUL9mFkqBq2bSX7M-3gD3ZmbzjfuDzMvnAt8H0yI3r-XiaDjt_NNEuowk8HoxFTi4N1gI5jq73E86BzMhTyXlrgiXnJ8N_07zjX75zmsyW3DbrTMSeJzT5iWzCm_EUKb5iLwYzRrx-2K_Yz08ff9zeZZuvn-9vbzaZLVQxZ8IWNVQCuwqswAF6pUrbDKXoitZWaC2UMKhSirbtTG3FAF0zFNjIuhPpsa26Yu_O3J0Z9SGkW4WT9ob03c1GrzNQRSugrI4iZd-es4fgfy0YZz1RtDiOxqFfopaqVCDqVsoUleeoDT7GgMMTW4BeTem9Xk3p1ZQGoZOpVHrzwF-6CfunyqOXFPhwDmD6kSNh0NESOptcBbSz7j39j_8X7jelUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353017922</pqid></control><display><type>article</type><title>Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bereby-Kahane, M. ; Dautry, R. ; Matzner-Lober, E. ; Cornelis, F. ; Sebbag-Sfez, D. ; Place, V. ; Mezzadri, M. ; Soyer, P. ; Dohan, A.</creator><creatorcontrib>Bereby-Kahane, M. ; Dautry, R. ; Matzner-Lober, E. ; Cornelis, F. ; Sebbag-Sfez, D. ; Place, V. ; Mezzadri, M. ; Soyer, P. ; Dohan, A.</creatorcontrib><description>To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma.
Seventy-three women (mean age: 66±11.5 [SD] years; range: 45–88 years) with endometrial adenocarcinoma who underwent MRI of the pelvis at 1.5-T before hysterectomy were retrospectively included. Texture analysis was performed using TexRAD® software on T2-weighted images and ADC maps. Primary outcomes were high-grade and LVSI prediction using histopathological analysis as standard of reference. After data reduction using ascending hierarchical classification analysis, a predictive model was obtained by stepwise multivariate logistic regression and performances were assessed using cross-validated receiver operator curve (ROC).
A total of 72 texture features per tumor were computed. Texture model yielded 52% sensitivity and 75% specificity for the diagnosis of high-grade tumor (areas under ROC curve [AUC]=0.64) and 71% sensitivity and 59% specificity for the diagnosis of LVSI (AUC=0.59). Volumes and tumor short axis were greater for high-grade tumors (P=0.0002 and P=0.004, respectively) and for patients with LVSI (P=0.004 and P=0.0279, respectively). No differences in ADC values were found between high-grade and low-grade tumors and for LVSI. A tumor short axis≥20mm yielded 95% sensitivity and 75% specificity for the diagnosis of high-grade tumor (AUC=0.86).
MRI-based texture analysis is of limited value to predict high grade and LVSI of endometrial adenocarcinoma. A tumor short axis≥20mm is the best predictor of high grade and LVSI.</description><identifier>ISSN: 2211-5684</identifier><identifier>EISSN: 2211-5684</identifier><identifier>DOI: 10.1016/j.diii.2020.01.003</identifier><identifier>PMID: 32037289</identifier><language>eng</language><publisher>France: Elsevier Masson SAS</publisher><subject>Endometrial adenocarcinoma ; Life Sciences ; Lymphovascular space invasion ; Magnetic resonance imaging (MRI) ; Radiomic analysis ; Texture analysis</subject><ispartof>Diagnostic and interventional imaging, 2020-06, Vol.101 (6), p.401-411</ispartof><rights>2020 Société française de radiologie</rights><rights>Copyright © 2020 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-1c47061eb60c1ef0d335c8f51b49c6ecc050f352199ba7c1f0b8f4e827b103793</citedby><cites>FETCH-LOGICAL-c434t-1c47061eb60c1ef0d335c8f51b49c6ecc050f352199ba7c1f0b8f4e827b103793</cites><orcidid>0000-0002-0760-3686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32037289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03491056$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bereby-Kahane, M.</creatorcontrib><creatorcontrib>Dautry, R.</creatorcontrib><creatorcontrib>Matzner-Lober, E.</creatorcontrib><creatorcontrib>Cornelis, F.</creatorcontrib><creatorcontrib>Sebbag-Sfez, D.</creatorcontrib><creatorcontrib>Place, V.</creatorcontrib><creatorcontrib>Mezzadri, M.</creatorcontrib><creatorcontrib>Soyer, P.</creatorcontrib><creatorcontrib>Dohan, A.</creatorcontrib><title>Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis</title><title>Diagnostic and interventional imaging</title><addtitle>Diagn Interv Imaging</addtitle><description>To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma.
Seventy-three women (mean age: 66±11.5 [SD] years; range: 45–88 years) with endometrial adenocarcinoma who underwent MRI of the pelvis at 1.5-T before hysterectomy were retrospectively included. Texture analysis was performed using TexRAD® software on T2-weighted images and ADC maps. Primary outcomes were high-grade and LVSI prediction using histopathological analysis as standard of reference. After data reduction using ascending hierarchical classification analysis, a predictive model was obtained by stepwise multivariate logistic regression and performances were assessed using cross-validated receiver operator curve (ROC).
A total of 72 texture features per tumor were computed. Texture model yielded 52% sensitivity and 75% specificity for the diagnosis of high-grade tumor (areas under ROC curve [AUC]=0.64) and 71% sensitivity and 59% specificity for the diagnosis of LVSI (AUC=0.59). Volumes and tumor short axis were greater for high-grade tumors (P=0.0002 and P=0.004, respectively) and for patients with LVSI (P=0.004 and P=0.0279, respectively). No differences in ADC values were found between high-grade and low-grade tumors and for LVSI. A tumor short axis≥20mm yielded 95% sensitivity and 75% specificity for the diagnosis of high-grade tumor (AUC=0.86).
MRI-based texture analysis is of limited value to predict high grade and LVSI of endometrial adenocarcinoma. A tumor short axis≥20mm is the best predictor of high grade and LVSI.</description><subject>Endometrial adenocarcinoma</subject><subject>Life Sciences</subject><subject>Lymphovascular space invasion</subject><subject>Magnetic resonance imaging (MRI)</subject><subject>Radiomic analysis</subject><subject>Texture analysis</subject><issn>2211-5684</issn><issn>2211-5684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EolXpC7BAXsIi4drOr8SmqoBWGgRCsLYc52bmjhJ7sJNBs-TNcTRtxQpvbF1935Htw9hrAbkAUb3f5z0R5RIk5CByAPWMXUopRFZWTfH8n_MFu45xD2lVqVgUL9mFkqBq2bSX7M-3gD3ZmbzjfuDzMvnAt8H0yI3r-XiaDjt_NNEuowk8HoxFTi4N1gI5jq73E86BzMhTyXlrgiXnJ8N_07zjX75zmsyW3DbrTMSeJzT5iWzCm_EUKb5iLwYzRrx-2K_Yz08ff9zeZZuvn-9vbzaZLVQxZ8IWNVQCuwqswAF6pUrbDKXoitZWaC2UMKhSirbtTG3FAF0zFNjIuhPpsa26Yu_O3J0Z9SGkW4WT9ob03c1GrzNQRSugrI4iZd-es4fgfy0YZz1RtDiOxqFfopaqVCDqVsoUleeoDT7GgMMTW4BeTem9Xk3p1ZQGoZOpVHrzwF-6CfunyqOXFPhwDmD6kSNh0NESOptcBbSz7j39j_8X7jelUA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Bereby-Kahane, M.</creator><creator>Dautry, R.</creator><creator>Matzner-Lober, E.</creator><creator>Cornelis, F.</creator><creator>Sebbag-Sfez, D.</creator><creator>Place, V.</creator><creator>Mezzadri, M.</creator><creator>Soyer, P.</creator><creator>Dohan, A.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0760-3686</orcidid></search><sort><creationdate>20200601</creationdate><title>Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis</title><author>Bereby-Kahane, M. ; Dautry, R. ; Matzner-Lober, E. ; Cornelis, F. ; Sebbag-Sfez, D. ; Place, V. ; Mezzadri, M. ; Soyer, P. ; Dohan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-1c47061eb60c1ef0d335c8f51b49c6ecc050f352199ba7c1f0b8f4e827b103793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Endometrial adenocarcinoma</topic><topic>Life Sciences</topic><topic>Lymphovascular space invasion</topic><topic>Magnetic resonance imaging (MRI)</topic><topic>Radiomic analysis</topic><topic>Texture analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bereby-Kahane, M.</creatorcontrib><creatorcontrib>Dautry, R.</creatorcontrib><creatorcontrib>Matzner-Lober, E.</creatorcontrib><creatorcontrib>Cornelis, F.</creatorcontrib><creatorcontrib>Sebbag-Sfez, D.</creatorcontrib><creatorcontrib>Place, V.</creatorcontrib><creatorcontrib>Mezzadri, M.</creatorcontrib><creatorcontrib>Soyer, P.</creatorcontrib><creatorcontrib>Dohan, A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Diagnostic and interventional imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bereby-Kahane, M.</au><au>Dautry, R.</au><au>Matzner-Lober, E.</au><au>Cornelis, F.</au><au>Sebbag-Sfez, D.</au><au>Place, V.</au><au>Mezzadri, M.</au><au>Soyer, P.</au><au>Dohan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis</atitle><jtitle>Diagnostic and interventional imaging</jtitle><addtitle>Diagn Interv Imaging</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>101</volume><issue>6</issue><spage>401</spage><epage>411</epage><pages>401-411</pages><issn>2211-5684</issn><eissn>2211-5684</eissn><abstract>To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma.
Seventy-three women (mean age: 66±11.5 [SD] years; range: 45–88 years) with endometrial adenocarcinoma who underwent MRI of the pelvis at 1.5-T before hysterectomy were retrospectively included. Texture analysis was performed using TexRAD® software on T2-weighted images and ADC maps. Primary outcomes were high-grade and LVSI prediction using histopathological analysis as standard of reference. After data reduction using ascending hierarchical classification analysis, a predictive model was obtained by stepwise multivariate logistic regression and performances were assessed using cross-validated receiver operator curve (ROC).
A total of 72 texture features per tumor were computed. Texture model yielded 52% sensitivity and 75% specificity for the diagnosis of high-grade tumor (areas under ROC curve [AUC]=0.64) and 71% sensitivity and 59% specificity for the diagnosis of LVSI (AUC=0.59). Volumes and tumor short axis were greater for high-grade tumors (P=0.0002 and P=0.004, respectively) and for patients with LVSI (P=0.004 and P=0.0279, respectively). No differences in ADC values were found between high-grade and low-grade tumors and for LVSI. A tumor short axis≥20mm yielded 95% sensitivity and 75% specificity for the diagnosis of high-grade tumor (AUC=0.86).
MRI-based texture analysis is of limited value to predict high grade and LVSI of endometrial adenocarcinoma. A tumor short axis≥20mm is the best predictor of high grade and LVSI.</abstract><cop>France</cop><pub>Elsevier Masson SAS</pub><pmid>32037289</pmid><doi>10.1016/j.diii.2020.01.003</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0760-3686</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-5684 |
ispartof | Diagnostic and interventional imaging, 2020-06, Vol.101 (6), p.401-411 |
issn | 2211-5684 2211-5684 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03491056v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Endometrial adenocarcinoma Life Sciences Lymphovascular space invasion Magnetic resonance imaging (MRI) Radiomic analysis Texture analysis |
title | Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20tumor%20grade%20and%20lymphovascular%20space%20invasion%20in%20endometrial%20adenocarcinoma%20with%20MR%20imaging-based%20radiomic%20analysis&rft.jtitle=Diagnostic%20and%20interventional%20imaging&rft.au=Bereby-Kahane,%20M.&rft.date=2020-06-01&rft.volume=101&rft.issue=6&rft.spage=401&rft.epage=411&rft.pages=401-411&rft.issn=2211-5684&rft.eissn=2211-5684&rft_id=info:doi/10.1016/j.diii.2020.01.003&rft_dat=%3Cproquest_hal_p%3E2353017922%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353017922&rft_id=info:pmid/32037289&rft_els_id=S2211568420300048&rfr_iscdi=true |