Optimal control for the evolution of deterministic multi-agent systems

We investigate an optimal control problem with a large number of agents (possibly infinitely many). Although the dynamical system (a controlled ordinary differential equation) is of the same type for every agent, each agent may have a different control. So, the multi-agent dynamical system has two l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2020-07, Vol.269 (3), p.2228-2263
Hauptverfasser: Bivas, Mira, Quincampoix, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2263
container_issue 3
container_start_page 2228
container_title Journal of Differential Equations
container_volume 269
creator Bivas, Mira
Quincampoix, Marc
description We investigate an optimal control problem with a large number of agents (possibly infinitely many). Although the dynamical system (a controlled ordinary differential equation) is of the same type for every agent, each agent may have a different control. So, the multi-agent dynamical system has two levels: a microscopic one, which concerns the control system of each agent, and a macroscopic level, which describes the evolution of the crowd of all agents. The state variable of the macroscopic system is the set of positions of the agents. In the present paper we define and study the evolution of such a global dynamical system whose solutions are called solution tubes. We also consider a minimization problem associated with the multi-agent system and we give a new characterization of the corresponding value function as the unique solution of a Hamilton-Jacobi-Bellman equation stated on the space of compact subsets of Rd.
doi_str_mv 10.1016/j.jde.2020.01.034
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03490211v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039620300462</els_id><sourcerecordid>S0022039620300462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-79b849e9feb90df8d7f9e91adf7cbf6cef1efbfe4d7128e07be29268de95b23b3</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gLdcPSTObNKki6dSrAqFXvS8JLuzdkOSLbvbQv-9CRWPnoY3vG-Y9xh7RMgQsHxus1ZTxoFDBphBXlyxGYKAlFc5v2YzAM5TyEV5y-5CaAEQF-Vixja7Q7R93SXKDdG7LjHOJ3FPCZ1cd4zWDYkziaZIvreDDdGqpD920ab1Nw0xCecQqQ_37MbUXaCH3zlnX5vXz_V7ut29faxX21TlVRHTSjTLQpAw1AjQZqkrMyqstalUY0pFBsk0hgpdIV8SVA1xwculJrFoeN7kc_Z0ubuvO3nw4-f-LF1t5ftqK6fdmFwARzzh6MWLV3kXgifzByDIqTTZyrE0OZUmASd0ZF4uDI0hTpa8DMrSoEhbTypK7ew_9A9xg3Yp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal control for the evolution of deterministic multi-agent systems</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bivas, Mira ; Quincampoix, Marc</creator><creatorcontrib>Bivas, Mira ; Quincampoix, Marc</creatorcontrib><description>We investigate an optimal control problem with a large number of agents (possibly infinitely many). Although the dynamical system (a controlled ordinary differential equation) is of the same type for every agent, each agent may have a different control. So, the multi-agent dynamical system has two levels: a microscopic one, which concerns the control system of each agent, and a macroscopic level, which describes the evolution of the crowd of all agents. The state variable of the macroscopic system is the set of positions of the agents. In the present paper we define and study the evolution of such a global dynamical system whose solutions are called solution tubes. We also consider a minimization problem associated with the multi-agent system and we give a new characterization of the corresponding value function as the unique solution of a Hamilton-Jacobi-Bellman equation stated on the space of compact subsets of Rd.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1016/j.jde.2020.01.034</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Control system ; Differential inclusion ; Hamilton-Jacobi equations ; Mathematics ; Optimal control ; Set evolution equation</subject><ispartof>Journal of Differential Equations, 2020-07, Vol.269 (3), p.2228-2263</ispartof><rights>2020 Elsevier Inc.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-79b849e9feb90df8d7f9e91adf7cbf6cef1efbfe4d7128e07be29268de95b23b3</citedby><cites>FETCH-LOGICAL-c374t-79b849e9feb90df8d7f9e91adf7cbf6cef1efbfe4d7128e07be29268de95b23b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jde.2020.01.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03490211$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bivas, Mira</creatorcontrib><creatorcontrib>Quincampoix, Marc</creatorcontrib><title>Optimal control for the evolution of deterministic multi-agent systems</title><title>Journal of Differential Equations</title><description>We investigate an optimal control problem with a large number of agents (possibly infinitely many). Although the dynamical system (a controlled ordinary differential equation) is of the same type for every agent, each agent may have a different control. So, the multi-agent dynamical system has two levels: a microscopic one, which concerns the control system of each agent, and a macroscopic level, which describes the evolution of the crowd of all agents. The state variable of the macroscopic system is the set of positions of the agents. In the present paper we define and study the evolution of such a global dynamical system whose solutions are called solution tubes. We also consider a minimization problem associated with the multi-agent system and we give a new characterization of the corresponding value function as the unique solution of a Hamilton-Jacobi-Bellman equation stated on the space of compact subsets of Rd.</description><subject>Control system</subject><subject>Differential inclusion</subject><subject>Hamilton-Jacobi equations</subject><subject>Mathematics</subject><subject>Optimal control</subject><subject>Set evolution equation</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZ_gLdcPSTObNKki6dSrAqFXvS8JLuzdkOSLbvbQv-9CRWPnoY3vG-Y9xh7RMgQsHxus1ZTxoFDBphBXlyxGYKAlFc5v2YzAM5TyEV5y-5CaAEQF-Vixja7Q7R93SXKDdG7LjHOJ3FPCZ1cd4zWDYkziaZIvreDDdGqpD920ab1Nw0xCecQqQ_37MbUXaCH3zlnX5vXz_V7ut29faxX21TlVRHTSjTLQpAw1AjQZqkrMyqstalUY0pFBsk0hgpdIV8SVA1xwculJrFoeN7kc_Z0ubuvO3nw4-f-LF1t5ftqK6fdmFwARzzh6MWLV3kXgifzByDIqTTZyrE0OZUmASd0ZF4uDI0hTpa8DMrSoEhbTypK7ew_9A9xg3Yp</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Bivas, Mira</creator><creator>Quincampoix, Marc</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20200715</creationdate><title>Optimal control for the evolution of deterministic multi-agent systems</title><author>Bivas, Mira ; Quincampoix, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-79b849e9feb90df8d7f9e91adf7cbf6cef1efbfe4d7128e07be29268de95b23b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control system</topic><topic>Differential inclusion</topic><topic>Hamilton-Jacobi equations</topic><topic>Mathematics</topic><topic>Optimal control</topic><topic>Set evolution equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bivas, Mira</creatorcontrib><creatorcontrib>Quincampoix, Marc</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bivas, Mira</au><au>Quincampoix, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control for the evolution of deterministic multi-agent systems</atitle><jtitle>Journal of Differential Equations</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>269</volume><issue>3</issue><spage>2228</spage><epage>2263</epage><pages>2228-2263</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>We investigate an optimal control problem with a large number of agents (possibly infinitely many). Although the dynamical system (a controlled ordinary differential equation) is of the same type for every agent, each agent may have a different control. So, the multi-agent dynamical system has two levels: a microscopic one, which concerns the control system of each agent, and a macroscopic level, which describes the evolution of the crowd of all agents. The state variable of the macroscopic system is the set of positions of the agents. In the present paper we define and study the evolution of such a global dynamical system whose solutions are called solution tubes. We also consider a minimization problem associated with the multi-agent system and we give a new characterization of the corresponding value function as the unique solution of a Hamilton-Jacobi-Bellman equation stated on the space of compact subsets of Rd.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jde.2020.01.034</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0396
ispartof Journal of Differential Equations, 2020-07, Vol.269 (3), p.2228-2263
issn 0022-0396
1090-2732
language eng
recordid cdi_hal_primary_oai_HAL_hal_03490211v1
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Control system
Differential inclusion
Hamilton-Jacobi equations
Mathematics
Optimal control
Set evolution equation
title Optimal control for the evolution of deterministic multi-agent systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20for%20the%20evolution%20of%20deterministic%20multi-agent%20systems&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Bivas,%20Mira&rft.date=2020-07-15&rft.volume=269&rft.issue=3&rft.spage=2228&rft.epage=2263&rft.pages=2228-2263&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1016/j.jde.2020.01.034&rft_dat=%3Celsevier_hal_p%3ES0022039620300462%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022039620300462&rfr_iscdi=true