Practical implementation of Li doped SiO in high energy density 21700 cell

SiO is a promising negative electrode material to increase Li-ion batteries specific energy thanks to its high capacity and stability. However it needs to be blended in low amounts with graphite because of its poor first cycle efficiency. Here we implement new Li doped carbon coated SiO material tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2020-02, Vol.450, p.227699, Article 227699
Hauptverfasser: Reynier, Y., Vincens, C., Leys, C., Amestoy, B., Mayousse, E., Chavillon, B., Blanc, L., Gutel, E., Porcher, W., Hirose, T., Matsui, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 227699
container_title Journal of power sources
container_volume 450
creator Reynier, Y.
Vincens, C.
Leys, C.
Amestoy, B.
Mayousse, E.
Chavillon, B.
Blanc, L.
Gutel, E.
Porcher, W.
Hirose, T.
Matsui, C.
description SiO is a promising negative electrode material to increase Li-ion batteries specific energy thanks to its high capacity and stability. However it needs to be blended in low amounts with graphite because of its poor first cycle efficiency. Here we implement new Li doped carbon coated SiO material that overcomes this limitation and enables higher energy density cells. Reference SiO grade is compared to pre-lithiated materials and SiO content up to 20% blend with graphite are evaluated in pouch and 21700 cells with more than 500 cycles obtained at 90% depth of discharge. Reaction mechanism is proposed for standard as well as pre-lithiated SiO, and generalized for SiOx. Finally we discuss behavior in hard casing full cell using this simple model to calculate volume expansion. We show with steric consideration that 40% SiO is likely the ultimate ratio practically useable in cylindrical cells. •Li doped carbon coated SiO is implemented in industry representative 21700 cell.•Influence of SiO content in negative electrode is evaluated up to 20%wt.•A reaction mechanism is proposed for SiOx to calculate volume expansion.•Maximum allowed SiO–C content in 21700 cell is discussed based on this calculation.
doi_str_mv 10.1016/j.jpowsour.2020.227699
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03489808v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775320300021</els_id><sourcerecordid>oai_HAL_hal_03489808v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-80c11ba3d378c4adcc3977f4f377bebab33f5812bcdcc59404dfa62e7de6bfd23</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQfLqQ2f-tE375hjqlMIE9Tmkyc2W0jUlqcq-vR1VX326cO45h3t_CF1TsqCE5rfNoun9V_QfYcEIIwvGRF6WJ2hGC8ETJrLsFM0IF0UiRMbP0UWMDSGEUkFm6PklKD04rVrs9n0Le-gGNTjfYW9x5bDxPRj86jbYdXjntjsMHYTtARvoohsOmI01BGto20t0ZlUb4epnztH7w_3bap1Um8en1bJKNC_TISmIprRW3IwX6VQZPcpC2NRyIWqoVc25zQrKaj2usjIlqbEqZyAM5LU1jM_RzdS7U63sg9urcJBeObleVvKoEZ4WZUGKTzp688mrg48xgP0LUCKP9GQjf-nJIz050RuDd1MQxk8-HQQZtYNOg3EB9CCNd_9VfAOZ1HwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Practical implementation of Li doped SiO in high energy density 21700 cell</title><source>Elsevier ScienceDirect Journals</source><creator>Reynier, Y. ; Vincens, C. ; Leys, C. ; Amestoy, B. ; Mayousse, E. ; Chavillon, B. ; Blanc, L. ; Gutel, E. ; Porcher, W. ; Hirose, T. ; Matsui, C.</creator><creatorcontrib>Reynier, Y. ; Vincens, C. ; Leys, C. ; Amestoy, B. ; Mayousse, E. ; Chavillon, B. ; Blanc, L. ; Gutel, E. ; Porcher, W. ; Hirose, T. ; Matsui, C.</creatorcontrib><description>SiO is a promising negative electrode material to increase Li-ion batteries specific energy thanks to its high capacity and stability. However it needs to be blended in low amounts with graphite because of its poor first cycle efficiency. Here we implement new Li doped carbon coated SiO material that overcomes this limitation and enables higher energy density cells. Reference SiO grade is compared to pre-lithiated materials and SiO content up to 20% blend with graphite are evaluated in pouch and 21700 cells with more than 500 cycles obtained at 90% depth of discharge. Reaction mechanism is proposed for standard as well as pre-lithiated SiO, and generalized for SiOx. Finally we discuss behavior in hard casing full cell using this simple model to calculate volume expansion. We show with steric consideration that 40% SiO is likely the ultimate ratio practically useable in cylindrical cells. •Li doped carbon coated SiO is implemented in industry representative 21700 cell.•Influence of SiO content in negative electrode is evaluated up to 20%wt.•A reaction mechanism is proposed for SiOx to calculate volume expansion.•Maximum allowed SiO–C content in 21700 cell is discussed based on this calculation.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2020.227699</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>21700 ; Chemical Sciences ; Li-ion ; Pre-lithiation ; Silicon oxide ; SiO</subject><ispartof>Journal of power sources, 2020-02, Vol.450, p.227699, Article 227699</ispartof><rights>2020 Elsevier B.V.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-80c11ba3d378c4adcc3977f4f377bebab33f5812bcdcc59404dfa62e7de6bfd23</citedby><cites>FETCH-LOGICAL-c394t-80c11ba3d378c4adcc3977f4f377bebab33f5812bcdcc59404dfa62e7de6bfd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775320300021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03489808$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Reynier, Y.</creatorcontrib><creatorcontrib>Vincens, C.</creatorcontrib><creatorcontrib>Leys, C.</creatorcontrib><creatorcontrib>Amestoy, B.</creatorcontrib><creatorcontrib>Mayousse, E.</creatorcontrib><creatorcontrib>Chavillon, B.</creatorcontrib><creatorcontrib>Blanc, L.</creatorcontrib><creatorcontrib>Gutel, E.</creatorcontrib><creatorcontrib>Porcher, W.</creatorcontrib><creatorcontrib>Hirose, T.</creatorcontrib><creatorcontrib>Matsui, C.</creatorcontrib><title>Practical implementation of Li doped SiO in high energy density 21700 cell</title><title>Journal of power sources</title><description>SiO is a promising negative electrode material to increase Li-ion batteries specific energy thanks to its high capacity and stability. However it needs to be blended in low amounts with graphite because of its poor first cycle efficiency. Here we implement new Li doped carbon coated SiO material that overcomes this limitation and enables higher energy density cells. Reference SiO grade is compared to pre-lithiated materials and SiO content up to 20% blend with graphite are evaluated in pouch and 21700 cells with more than 500 cycles obtained at 90% depth of discharge. Reaction mechanism is proposed for standard as well as pre-lithiated SiO, and generalized for SiOx. Finally we discuss behavior in hard casing full cell using this simple model to calculate volume expansion. We show with steric consideration that 40% SiO is likely the ultimate ratio practically useable in cylindrical cells. •Li doped carbon coated SiO is implemented in industry representative 21700 cell.•Influence of SiO content in negative electrode is evaluated up to 20%wt.•A reaction mechanism is proposed for SiOx to calculate volume expansion.•Maximum allowed SiO–C content in 21700 cell is discussed based on this calculation.</description><subject>21700</subject><subject>Chemical Sciences</subject><subject>Li-ion</subject><subject>Pre-lithiation</subject><subject>Silicon oxide</subject><subject>SiO</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKdfQfLqQ2f-tE375hjqlMIE9Tmkyc2W0jUlqcq-vR1VX326cO45h3t_CF1TsqCE5rfNoun9V_QfYcEIIwvGRF6WJ2hGC8ETJrLsFM0IF0UiRMbP0UWMDSGEUkFm6PklKD04rVrs9n0Le-gGNTjfYW9x5bDxPRj86jbYdXjntjsMHYTtARvoohsOmI01BGto20t0ZlUb4epnztH7w_3bap1Um8en1bJKNC_TISmIprRW3IwX6VQZPcpC2NRyIWqoVc25zQrKaj2usjIlqbEqZyAM5LU1jM_RzdS7U63sg9urcJBeObleVvKoEZ4WZUGKTzp688mrg48xgP0LUCKP9GQjf-nJIz050RuDd1MQxk8-HQQZtYNOg3EB9CCNd_9VfAOZ1HwA</recordid><startdate>20200229</startdate><enddate>20200229</enddate><creator>Reynier, Y.</creator><creator>Vincens, C.</creator><creator>Leys, C.</creator><creator>Amestoy, B.</creator><creator>Mayousse, E.</creator><creator>Chavillon, B.</creator><creator>Blanc, L.</creator><creator>Gutel, E.</creator><creator>Porcher, W.</creator><creator>Hirose, T.</creator><creator>Matsui, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20200229</creationdate><title>Practical implementation of Li doped SiO in high energy density 21700 cell</title><author>Reynier, Y. ; Vincens, C. ; Leys, C. ; Amestoy, B. ; Mayousse, E. ; Chavillon, B. ; Blanc, L. ; Gutel, E. ; Porcher, W. ; Hirose, T. ; Matsui, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-80c11ba3d378c4adcc3977f4f377bebab33f5812bcdcc59404dfa62e7de6bfd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>21700</topic><topic>Chemical Sciences</topic><topic>Li-ion</topic><topic>Pre-lithiation</topic><topic>Silicon oxide</topic><topic>SiO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reynier, Y.</creatorcontrib><creatorcontrib>Vincens, C.</creatorcontrib><creatorcontrib>Leys, C.</creatorcontrib><creatorcontrib>Amestoy, B.</creatorcontrib><creatorcontrib>Mayousse, E.</creatorcontrib><creatorcontrib>Chavillon, B.</creatorcontrib><creatorcontrib>Blanc, L.</creatorcontrib><creatorcontrib>Gutel, E.</creatorcontrib><creatorcontrib>Porcher, W.</creatorcontrib><creatorcontrib>Hirose, T.</creatorcontrib><creatorcontrib>Matsui, C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynier, Y.</au><au>Vincens, C.</au><au>Leys, C.</au><au>Amestoy, B.</au><au>Mayousse, E.</au><au>Chavillon, B.</au><au>Blanc, L.</au><au>Gutel, E.</au><au>Porcher, W.</au><au>Hirose, T.</au><au>Matsui, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical implementation of Li doped SiO in high energy density 21700 cell</atitle><jtitle>Journal of power sources</jtitle><date>2020-02-29</date><risdate>2020</risdate><volume>450</volume><spage>227699</spage><pages>227699-</pages><artnum>227699</artnum><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>SiO is a promising negative electrode material to increase Li-ion batteries specific energy thanks to its high capacity and stability. However it needs to be blended in low amounts with graphite because of its poor first cycle efficiency. Here we implement new Li doped carbon coated SiO material that overcomes this limitation and enables higher energy density cells. Reference SiO grade is compared to pre-lithiated materials and SiO content up to 20% blend with graphite are evaluated in pouch and 21700 cells with more than 500 cycles obtained at 90% depth of discharge. Reaction mechanism is proposed for standard as well as pre-lithiated SiO, and generalized for SiOx. Finally we discuss behavior in hard casing full cell using this simple model to calculate volume expansion. We show with steric consideration that 40% SiO is likely the ultimate ratio practically useable in cylindrical cells. •Li doped carbon coated SiO is implemented in industry representative 21700 cell.•Influence of SiO content in negative electrode is evaluated up to 20%wt.•A reaction mechanism is proposed for SiOx to calculate volume expansion.•Maximum allowed SiO–C content in 21700 cell is discussed based on this calculation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2020.227699</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2020-02, Vol.450, p.227699, Article 227699
issn 0378-7753
1873-2755
language eng
recordid cdi_hal_primary_oai_HAL_hal_03489808v1
source Elsevier ScienceDirect Journals
subjects 21700
Chemical Sciences
Li-ion
Pre-lithiation
Silicon oxide
SiO
title Practical implementation of Li doped SiO in high energy density 21700 cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20implementation%20of%20Li%20doped%20SiO%20in%20high%20energy%20density%2021700%20cell&rft.jtitle=Journal%20of%20power%20sources&rft.au=Reynier,%20Y.&rft.date=2020-02-29&rft.volume=450&rft.spage=227699&rft.pages=227699-&rft.artnum=227699&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2020.227699&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03489808v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775320300021&rfr_iscdi=true