Evaluating the impact of transport inertia on the electrochemical response of lithium ion battery single particle models

The description of the transport mechanisms in operating Li ion battery cells is of key importance for a correct evaluation of their performance and for their optimization. In this work, we revise the Fickian approach for the description of the lithium transport in intercalation-type active material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2019-05, Vol.423, p.263-270
Hauptverfasser: Maiza, Mariem, Mammeri, Youcef, Nguyen, Dinh An, Legrand, Nathalie, Desprez, Philippe, Franco, Alejandro A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue
container_start_page 263
container_title Journal of power sources
container_volume 423
creator Maiza, Mariem
Mammeri, Youcef
Nguyen, Dinh An
Legrand, Nathalie
Desprez, Philippe
Franco, Alejandro A.
description The description of the transport mechanisms in operating Li ion battery cells is of key importance for a correct evaluation of their performance and for their optimization. In this work, we revise the Fickian approach for the description of the lithium transport in intercalation-type active materials. We adopt the Maxwell-Cattaneo-Vernotte (MCV) theory to capture the impact of lithium transport inertia on the electrochemical response of graphitic materials, taken here as an application example. We formalize this theory by means of an analytical mathematical expression which allows extracting the values of the lithium diffusion coefficient DMCV and the inertia characteristic time τ from potentiostatic intermittent titration technique (PITT) experiments. The implications of adopting the MCV theory in single particle models to calculate transient current response during the graphite lithiation are discussed (i) on the basis of the fitting of the calculations with in house PITT results and, (ii) by comparing the estimated diffusion coefficients with the ones resulting from the fitting using the classical Fickian approach. •Context of power LIB applications requiring high C-rate for short times.•Using Maxwell-Cattaneo-Vernotte theory capturing lithium transport inertia.•Method to extract theory parameters from PITT experiments.•Single particle model showing importance of considering lithium diffusion inertia.
doi_str_mv 10.1016/j.jpowsour.2019.03.004
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03485879v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775319302356</els_id><sourcerecordid>oai_HAL_hal_03485879v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-baf4110c20c0b4e7c8da6f4b1636cfb33a58446bfdc2c4fc2280d483b8bada203</originalsourceid><addsrcrecordid>eNqFkEFv2yAYhtG0Ssva_oWK6w52Pwy2yW1V1S2VIvXSntFn_Lkhso0FJFv__ciy9doTCD3PK_EwdiOgFCCa2325X_yv6A-hrECsS5AlgPrEVkK3sqjauv7MViBbXbRtLb-wrzHuAUCIFlbs98MRxwMmN7_ytCPupgVt4n7gKeAcFx8SdzOF5JD7-S9CI9kUvN3R5CyOPFDG5kgnaXRp5w4Td5ntMCUKbzzm7ZH4gnnE5svkexrjFbsYcIx0_e-8ZC8_Hp7vN8X26efj_d22sErKVHQ4KCHAVmChU9Ra3WMzqE40srFDJyXWWqmmG3pbWTXYqtLQKy073WGPFchL9u28u8PRLMFNGN6MR2c2d1tzegOpdK3b9VFktjmzNvgYAw3vggBzam325n9rc2qdZZNbZ_H7Wcwfo6OjYKJ1NFvqXcixTO_dRxN_AJtej04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluating the impact of transport inertia on the electrochemical response of lithium ion battery single particle models</title><source>Elsevier ScienceDirect Journals</source><creator>Maiza, Mariem ; Mammeri, Youcef ; Nguyen, Dinh An ; Legrand, Nathalie ; Desprez, Philippe ; Franco, Alejandro A.</creator><creatorcontrib>Maiza, Mariem ; Mammeri, Youcef ; Nguyen, Dinh An ; Legrand, Nathalie ; Desprez, Philippe ; Franco, Alejandro A.</creatorcontrib><description>The description of the transport mechanisms in operating Li ion battery cells is of key importance for a correct evaluation of their performance and for their optimization. In this work, we revise the Fickian approach for the description of the lithium transport in intercalation-type active materials. We adopt the Maxwell-Cattaneo-Vernotte (MCV) theory to capture the impact of lithium transport inertia on the electrochemical response of graphitic materials, taken here as an application example. We formalize this theory by means of an analytical mathematical expression which allows extracting the values of the lithium diffusion coefficient DMCV and the inertia characteristic time τ from potentiostatic intermittent titration technique (PITT) experiments. The implications of adopting the MCV theory in single particle models to calculate transient current response during the graphite lithiation are discussed (i) on the basis of the fitting of the calculations with in house PITT results and, (ii) by comparing the estimated diffusion coefficients with the ones resulting from the fitting using the classical Fickian approach. •Context of power LIB applications requiring high C-rate for short times.•Using Maxwell-Cattaneo-Vernotte theory capturing lithium transport inertia.•Method to extract theory parameters from PITT experiments.•Single particle model showing importance of considering lithium diffusion inertia.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2019.03.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical Sciences ; Inertia ; Lithium diffusion ; Lithium ion batteries ; Single particle model</subject><ispartof>Journal of power sources, 2019-05, Vol.423, p.263-270</ispartof><rights>2019 Elsevier B.V.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-baf4110c20c0b4e7c8da6f4b1636cfb33a58446bfdc2c4fc2280d483b8bada203</citedby><cites>FETCH-LOGICAL-c433t-baf4110c20c0b4e7c8da6f4b1636cfb33a58446bfdc2c4fc2280d483b8bada203</cites><orcidid>0000-0001-7362-7849 ; 0000-0002-7200-4014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775319302356$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03485879$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maiza, Mariem</creatorcontrib><creatorcontrib>Mammeri, Youcef</creatorcontrib><creatorcontrib>Nguyen, Dinh An</creatorcontrib><creatorcontrib>Legrand, Nathalie</creatorcontrib><creatorcontrib>Desprez, Philippe</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><title>Evaluating the impact of transport inertia on the electrochemical response of lithium ion battery single particle models</title><title>Journal of power sources</title><description>The description of the transport mechanisms in operating Li ion battery cells is of key importance for a correct evaluation of their performance and for their optimization. In this work, we revise the Fickian approach for the description of the lithium transport in intercalation-type active materials. We adopt the Maxwell-Cattaneo-Vernotte (MCV) theory to capture the impact of lithium transport inertia on the electrochemical response of graphitic materials, taken here as an application example. We formalize this theory by means of an analytical mathematical expression which allows extracting the values of the lithium diffusion coefficient DMCV and the inertia characteristic time τ from potentiostatic intermittent titration technique (PITT) experiments. The implications of adopting the MCV theory in single particle models to calculate transient current response during the graphite lithiation are discussed (i) on the basis of the fitting of the calculations with in house PITT results and, (ii) by comparing the estimated diffusion coefficients with the ones resulting from the fitting using the classical Fickian approach. •Context of power LIB applications requiring high C-rate for short times.•Using Maxwell-Cattaneo-Vernotte theory capturing lithium transport inertia.•Method to extract theory parameters from PITT experiments.•Single particle model showing importance of considering lithium diffusion inertia.</description><subject>Chemical Sciences</subject><subject>Inertia</subject><subject>Lithium diffusion</subject><subject>Lithium ion batteries</subject><subject>Single particle model</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv2yAYhtG0Ssva_oWK6w52Pwy2yW1V1S2VIvXSntFn_Lkhso0FJFv__ciy9doTCD3PK_EwdiOgFCCa2325X_yv6A-hrECsS5AlgPrEVkK3sqjauv7MViBbXbRtLb-wrzHuAUCIFlbs98MRxwMmN7_ytCPupgVt4n7gKeAcFx8SdzOF5JD7-S9CI9kUvN3R5CyOPFDG5kgnaXRp5w4Td5ntMCUKbzzm7ZH4gnnE5svkexrjFbsYcIx0_e-8ZC8_Hp7vN8X26efj_d22sErKVHQ4KCHAVmChU9Ra3WMzqE40srFDJyXWWqmmG3pbWTXYqtLQKy073WGPFchL9u28u8PRLMFNGN6MR2c2d1tzegOpdK3b9VFktjmzNvgYAw3vggBzam325n9rc2qdZZNbZ_H7Wcwfo6OjYKJ1NFvqXcixTO_dRxN_AJtej04</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Maiza, Mariem</creator><creator>Mammeri, Youcef</creator><creator>Nguyen, Dinh An</creator><creator>Legrand, Nathalie</creator><creator>Desprez, Philippe</creator><creator>Franco, Alejandro A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7362-7849</orcidid><orcidid>https://orcid.org/0000-0002-7200-4014</orcidid></search><sort><creationdate>20190531</creationdate><title>Evaluating the impact of transport inertia on the electrochemical response of lithium ion battery single particle models</title><author>Maiza, Mariem ; Mammeri, Youcef ; Nguyen, Dinh An ; Legrand, Nathalie ; Desprez, Philippe ; Franco, Alejandro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-baf4110c20c0b4e7c8da6f4b1636cfb33a58446bfdc2c4fc2280d483b8bada203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Sciences</topic><topic>Inertia</topic><topic>Lithium diffusion</topic><topic>Lithium ion batteries</topic><topic>Single particle model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maiza, Mariem</creatorcontrib><creatorcontrib>Mammeri, Youcef</creatorcontrib><creatorcontrib>Nguyen, Dinh An</creatorcontrib><creatorcontrib>Legrand, Nathalie</creatorcontrib><creatorcontrib>Desprez, Philippe</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maiza, Mariem</au><au>Mammeri, Youcef</au><au>Nguyen, Dinh An</au><au>Legrand, Nathalie</au><au>Desprez, Philippe</au><au>Franco, Alejandro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the impact of transport inertia on the electrochemical response of lithium ion battery single particle models</atitle><jtitle>Journal of power sources</jtitle><date>2019-05-31</date><risdate>2019</risdate><volume>423</volume><spage>263</spage><epage>270</epage><pages>263-270</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>The description of the transport mechanisms in operating Li ion battery cells is of key importance for a correct evaluation of their performance and for their optimization. In this work, we revise the Fickian approach for the description of the lithium transport in intercalation-type active materials. We adopt the Maxwell-Cattaneo-Vernotte (MCV) theory to capture the impact of lithium transport inertia on the electrochemical response of graphitic materials, taken here as an application example. We formalize this theory by means of an analytical mathematical expression which allows extracting the values of the lithium diffusion coefficient DMCV and the inertia characteristic time τ from potentiostatic intermittent titration technique (PITT) experiments. The implications of adopting the MCV theory in single particle models to calculate transient current response during the graphite lithiation are discussed (i) on the basis of the fitting of the calculations with in house PITT results and, (ii) by comparing the estimated diffusion coefficients with the ones resulting from the fitting using the classical Fickian approach. •Context of power LIB applications requiring high C-rate for short times.•Using Maxwell-Cattaneo-Vernotte theory capturing lithium transport inertia.•Method to extract theory parameters from PITT experiments.•Single particle model showing importance of considering lithium diffusion inertia.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2019.03.004</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7362-7849</orcidid><orcidid>https://orcid.org/0000-0002-7200-4014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2019-05, Vol.423, p.263-270
issn 0378-7753
1873-2755
language eng
recordid cdi_hal_primary_oai_HAL_hal_03485879v1
source Elsevier ScienceDirect Journals
subjects Chemical Sciences
Inertia
Lithium diffusion
Lithium ion batteries
Single particle model
title Evaluating the impact of transport inertia on the electrochemical response of lithium ion battery single particle models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20impact%20of%20transport%20inertia%20on%20the%20electrochemical%20response%20of%20lithium%20ion%20battery%20single%20particle%20models&rft.jtitle=Journal%20of%20power%20sources&rft.au=Maiza,%20Mariem&rft.date=2019-05-31&rft.volume=423&rft.spage=263&rft.epage=270&rft.pages=263-270&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2019.03.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03485879v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775319302356&rfr_iscdi=true