Motor-Level N-MPC for Cooperative Active Perception With Multiple Heterogeneous UAVs

This letter introduces a cooperative control framework based on Nonlinear Model Predictive Control (NMPC) for solving an Active Information Acquisition problem (AIA) using a system of multiple multirotor UAVs equipped with onboard sensors. The observation task of the NMPC is a minimum-uncertainty po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-04, Vol.7 (2), p.2063-2070
Hauptverfasser: Jacquet, Martin, Kivits, Max, Das, Hemjyoti, Franchi, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2070
container_issue 2
container_start_page 2063
container_title IEEE robotics and automation letters
container_volume 7
creator Jacquet, Martin
Kivits, Max
Das, Hemjyoti
Franchi, Antonio
description This letter introduces a cooperative control framework based on Nonlinear Model Predictive Control (NMPC) for solving an Active Information Acquisition problem (AIA) using a system of multiple multirotor UAVs equipped with onboard sensors. The observation task of the NMPC is a minimum-uncertainty pose estimation of a moving feature which is observed by the multi-UAV system, using a cooperative Kalman filter. The controller considers a full nonlinear model of the multirotors - including the motor-level actuation units and their real constraints in terms of maximum torque - and embeds the Kalman filter estimation uncertainty in its prediction. The framework allows and exploits heterogeneity in the actuation and sensing systems by considering a generic model of UAV - including both quadrotors and tilted-propeller multirotors - and a generic model of range-and-bearing sensor with arbitrary rate and field of view. The capability of the proposed framework to reduce the cooperative estimation uncertainty of a static or a moving feature, thus leading the system to optimal sensing configurations, is demonstrated through Gazebo simulations and real experiments. The software is provided open-source.
doi_str_mv 10.1109/LRA.2022.3143218
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03482081v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9682606</ieee_id><sourcerecordid>2622830767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-efd6231c66241ad0b5ae019b2651b7e20b9caa82c6de9112186d407a878475f93</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNTeBS8BTx5S9yPZ3RxDUCukWqTV47JJJjYlduPupuB_b2pL8fSG4fceMw-ha4KnhODkPn9LpxRTOmUkYpTIMzSiTIiQCc7P_82XaOLcBmNMYipYEo_Qcm68sWEOO2iDl3C-yILa2CAzpgOrfbODIC3_ZAG2hM43Zht8NH4dzPvWN10LwQw8WPMJWzC9C1bpu7tCF7VuHUyOOkarx4dlNgvz16fnLM3DknHhQ6grThkpOacR0RUuYg2YJAXlMSkEUFwkpdaSlryChJDhL15FWGgpZCTiOmFjdHfIXetWdbb50vZHGd2oWZqr_Q6zSFIsyY4N7O2B7az57sF5tTG93Q7nKcoplQwLLgYKH6jSGucs1KdYgtW-ajVUrfZVq2PVg-XmYGkA4IQnXFKOOfsFte93VQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622830767</pqid></control><display><type>article</type><title>Motor-Level N-MPC for Cooperative Active Perception With Multiple Heterogeneous UAVs</title><source>IEEE Electronic Library (IEL)</source><creator>Jacquet, Martin ; Kivits, Max ; Das, Hemjyoti ; Franchi, Antonio</creator><creatorcontrib>Jacquet, Martin ; Kivits, Max ; Das, Hemjyoti ; Franchi, Antonio</creatorcontrib><description>This letter introduces a cooperative control framework based on Nonlinear Model Predictive Control (NMPC) for solving an Active Information Acquisition problem (AIA) using a system of multiple multirotor UAVs equipped with onboard sensors. The observation task of the NMPC is a minimum-uncertainty pose estimation of a moving feature which is observed by the multi-UAV system, using a cooperative Kalman filter. The controller considers a full nonlinear model of the multirotors - including the motor-level actuation units and their real constraints in terms of maximum torque - and embeds the Kalman filter estimation uncertainty in its prediction. The framework allows and exploits heterogeneity in the actuation and sensing systems by considering a generic model of UAV - including both quadrotors and tilted-propeller multirotors - and a generic model of range-and-bearing sensor with arbitrary rate and field of view. The capability of the proposed framework to reduce the cooperative estimation uncertainty of a static or a moving feature, thus leading the system to optimal sensing configurations, is demonstrated through Gazebo simulations and real experiments. The software is provided open-source.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3143218</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuation ; aerial systems: applications ; aerial systems: mechanics and control ; Aerial systems: perception and autonomy ; Computer Science ; Cooperative control ; Data processing ; Estimation ; Field of view ; Heterogeneity ; Image Processing ; Kalman filters ; Measurement uncertainty ; Nonlinear control ; Pose estimation ; Predictive control ; Robot sensing systems ; Robotics ; Rotary wing aircraft ; Sensors ; Systems and Control ; Task analysis ; Uncertainty ; Unmanned aerial vehicles</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.2063-2070</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-efd6231c66241ad0b5ae019b2651b7e20b9caa82c6de9112186d407a878475f93</citedby><cites>FETCH-LOGICAL-c367t-efd6231c66241ad0b5ae019b2651b7e20b9caa82c6de9112186d407a878475f93</cites><orcidid>0000-0002-7016-4735 ; 0000-0001-9438-4356 ; 0000-0002-1075-3546 ; 0000-0002-5670-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9682606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9682606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://laas.hal.science/hal-03482081$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacquet, Martin</creatorcontrib><creatorcontrib>Kivits, Max</creatorcontrib><creatorcontrib>Das, Hemjyoti</creatorcontrib><creatorcontrib>Franchi, Antonio</creatorcontrib><title>Motor-Level N-MPC for Cooperative Active Perception With Multiple Heterogeneous UAVs</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This letter introduces a cooperative control framework based on Nonlinear Model Predictive Control (NMPC) for solving an Active Information Acquisition problem (AIA) using a system of multiple multirotor UAVs equipped with onboard sensors. The observation task of the NMPC is a minimum-uncertainty pose estimation of a moving feature which is observed by the multi-UAV system, using a cooperative Kalman filter. The controller considers a full nonlinear model of the multirotors - including the motor-level actuation units and their real constraints in terms of maximum torque - and embeds the Kalman filter estimation uncertainty in its prediction. The framework allows and exploits heterogeneity in the actuation and sensing systems by considering a generic model of UAV - including both quadrotors and tilted-propeller multirotors - and a generic model of range-and-bearing sensor with arbitrary rate and field of view. The capability of the proposed framework to reduce the cooperative estimation uncertainty of a static or a moving feature, thus leading the system to optimal sensing configurations, is demonstrated through Gazebo simulations and real experiments. The software is provided open-source.</description><subject>Actuation</subject><subject>aerial systems: applications</subject><subject>aerial systems: mechanics and control</subject><subject>Aerial systems: perception and autonomy</subject><subject>Computer Science</subject><subject>Cooperative control</subject><subject>Data processing</subject><subject>Estimation</subject><subject>Field of view</subject><subject>Heterogeneity</subject><subject>Image Processing</subject><subject>Kalman filters</subject><subject>Measurement uncertainty</subject><subject>Nonlinear control</subject><subject>Pose estimation</subject><subject>Predictive control</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Rotary wing aircraft</subject><subject>Sensors</subject><subject>Systems and Control</subject><subject>Task analysis</subject><subject>Uncertainty</subject><subject>Unmanned aerial vehicles</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsNTeBS8BTx5S9yPZ3RxDUCukWqTV47JJJjYlduPupuB_b2pL8fSG4fceMw-ha4KnhODkPn9LpxRTOmUkYpTIMzSiTIiQCc7P_82XaOLcBmNMYipYEo_Qcm68sWEOO2iDl3C-yILa2CAzpgOrfbODIC3_ZAG2hM43Zht8NH4dzPvWN10LwQw8WPMJWzC9C1bpu7tCF7VuHUyOOkarx4dlNgvz16fnLM3DknHhQ6grThkpOacR0RUuYg2YJAXlMSkEUFwkpdaSlryChJDhL15FWGgpZCTiOmFjdHfIXetWdbb50vZHGd2oWZqr_Q6zSFIsyY4N7O2B7az57sF5tTG93Q7nKcoplQwLLgYKH6jSGucs1KdYgtW-ajVUrfZVq2PVg-XmYGkA4IQnXFKOOfsFte93VQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Jacquet, Martin</creator><creator>Kivits, Max</creator><creator>Das, Hemjyoti</creator><creator>Franchi, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7016-4735</orcidid><orcidid>https://orcid.org/0000-0001-9438-4356</orcidid><orcidid>https://orcid.org/0000-0002-1075-3546</orcidid><orcidid>https://orcid.org/0000-0002-5670-1282</orcidid></search><sort><creationdate>20220401</creationdate><title>Motor-Level N-MPC for Cooperative Active Perception With Multiple Heterogeneous UAVs</title><author>Jacquet, Martin ; Kivits, Max ; Das, Hemjyoti ; Franchi, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-efd6231c66241ad0b5ae019b2651b7e20b9caa82c6de9112186d407a878475f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>aerial systems: applications</topic><topic>aerial systems: mechanics and control</topic><topic>Aerial systems: perception and autonomy</topic><topic>Computer Science</topic><topic>Cooperative control</topic><topic>Data processing</topic><topic>Estimation</topic><topic>Field of view</topic><topic>Heterogeneity</topic><topic>Image Processing</topic><topic>Kalman filters</topic><topic>Measurement uncertainty</topic><topic>Nonlinear control</topic><topic>Pose estimation</topic><topic>Predictive control</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Rotary wing aircraft</topic><topic>Sensors</topic><topic>Systems and Control</topic><topic>Task analysis</topic><topic>Uncertainty</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacquet, Martin</creatorcontrib><creatorcontrib>Kivits, Max</creatorcontrib><creatorcontrib>Das, Hemjyoti</creatorcontrib><creatorcontrib>Franchi, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jacquet, Martin</au><au>Kivits, Max</au><au>Das, Hemjyoti</au><au>Franchi, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motor-Level N-MPC for Cooperative Active Perception With Multiple Heterogeneous UAVs</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>2063</spage><epage>2070</epage><pages>2063-2070</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This letter introduces a cooperative control framework based on Nonlinear Model Predictive Control (NMPC) for solving an Active Information Acquisition problem (AIA) using a system of multiple multirotor UAVs equipped with onboard sensors. The observation task of the NMPC is a minimum-uncertainty pose estimation of a moving feature which is observed by the multi-UAV system, using a cooperative Kalman filter. The controller considers a full nonlinear model of the multirotors - including the motor-level actuation units and their real constraints in terms of maximum torque - and embeds the Kalman filter estimation uncertainty in its prediction. The framework allows and exploits heterogeneity in the actuation and sensing systems by considering a generic model of UAV - including both quadrotors and tilted-propeller multirotors - and a generic model of range-and-bearing sensor with arbitrary rate and field of view. The capability of the proposed framework to reduce the cooperative estimation uncertainty of a static or a moving feature, thus leading the system to optimal sensing configurations, is demonstrated through Gazebo simulations and real experiments. The software is provided open-source.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3143218</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7016-4735</orcidid><orcidid>https://orcid.org/0000-0001-9438-4356</orcidid><orcidid>https://orcid.org/0000-0002-1075-3546</orcidid><orcidid>https://orcid.org/0000-0002-5670-1282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.2063-2070
issn 2377-3766
2377-3766
language eng
recordid cdi_hal_primary_oai_HAL_hal_03482081v3
source IEEE Electronic Library (IEL)
subjects Actuation
aerial systems: applications
aerial systems: mechanics and control
Aerial systems: perception and autonomy
Computer Science
Cooperative control
Data processing
Estimation
Field of view
Heterogeneity
Image Processing
Kalman filters
Measurement uncertainty
Nonlinear control
Pose estimation
Predictive control
Robot sensing systems
Robotics
Rotary wing aircraft
Sensors
Systems and Control
Task analysis
Uncertainty
Unmanned aerial vehicles
title Motor-Level N-MPC for Cooperative Active Perception With Multiple Heterogeneous UAVs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motor-Level%20N-MPC%20for%20Cooperative%20Active%20Perception%20With%20Multiple%20Heterogeneous%20UAVs&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Jacquet,%20Martin&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=2063&rft.epage=2070&rft.pages=2063-2070&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3143218&rft_dat=%3Cproquest_RIE%3E2622830767%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622830767&rft_id=info:pmid/&rft_ieee_id=9682606&rfr_iscdi=true