Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model

This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle time-dependent uniaxial loading, confined and unconfined, with various geometries and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2022-02, Vol.126, p.104952-104952, Article 104952
Hauptverfasser: Urcun, Stéphane, Rohan, Pierre-Yves, Sciumè, Giuseppe, Bordas, Stéphane P.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104952
container_issue
container_start_page 104952
container_title Journal of the mechanical behavior of biomedical materials
container_volume 126
creator Urcun, Stéphane
Rohan, Pierre-Yves
Sciumè, Giuseppe
Bordas, Stéphane P.A.
description This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle time-dependent uniaxial loading, confined and unconfined, with various geometries and loading rates from 1μm/s to 100μm/s. The cortex tissue is modeled as the porous solid saturated by two immiscible fluids, with dynamic viscosities separated by four orders, resulting in two different characteristic times. These are respectively associated to interstitial fluid and glial cells. The partial differential equations system is discretized in space by the finite element method and in time by Euler-implicit scheme. The solution is computed using a monolithic scheme within the open-source computational framework FEniCS. The parameters calibration is based on Sobol sensitivity analysis, which divides them into two groups: the tissue specific group, whose parameters represent general properties, and sample specific group, whose parameters have greater variations. Our results show that the experimental curves can be reproduced without the need to resort to viscous solid effects, by adding an additional fluid phase. Through this process, we aim to present multiphase poromechanics as a promising way to a unified brain tissue modeling framework in a variety of settings.
doi_str_mv 10.1016/j.jmbbm.2021.104952
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03480446v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S175161612100583X</els_id><sourcerecordid>2610410979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5c2770988a87fd8de05f14b151d6e98f00a809f96ab4f69f945fd19c865ae35e3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEoqXwC5CQj3DIdpw4jnPgUK0KRVqpF3q2HHusepXEwXa63X-Pt2l77GlGo2_eaN4riq8UNhQov9xv9mPfj5sKKponrGuqd8U5Fa0ogQp4n_u2oSWnnJ4Vn2LcA3AAIT4WZzXrgAvenBeHrQ8JH0lyMS5IAg7qUSXnJ6ImQ-LgDyR5MqJxy0gGrwwJKmEkBmecDE76SLSaSI-5zGkJaEh_JIqkgy_nexWR2JPG7IPP0jE5TUZvcPhcfLBqiPjluV4Ud7-u_25vyt3t7z_bq12pWS1S2eiqbaETQonWGmEQGktZTxtqOHbCAigBne246pnluWGNNbTT-TeFdYP1RfFj1b1Xg5yDG1U4Sq-cvLnaydMMaiaAMf5AM_t9Zefg_y0Ykxxd1DgMakK_RFnx7DKFru0yWq-oDj7GgPZVm4I8pSP38ikdeUpHrunkrW_PB5Y-W_q68xJHBn6uAGZLHhwGGbXLJmf7A-okjXdvHvgPunOhqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610410979</pqid></control><display><type>article</type><title>Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Urcun, Stéphane ; Rohan, Pierre-Yves ; Sciumè, Giuseppe ; Bordas, Stéphane P.A.</creator><creatorcontrib>Urcun, Stéphane ; Rohan, Pierre-Yves ; Sciumè, Giuseppe ; Bordas, Stéphane P.A.</creatorcontrib><description>This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle time-dependent uniaxial loading, confined and unconfined, with various geometries and loading rates from 1μm/s to 100μm/s. The cortex tissue is modeled as the porous solid saturated by two immiscible fluids, with dynamic viscosities separated by four orders, resulting in two different characteristic times. These are respectively associated to interstitial fluid and glial cells. The partial differential equations system is discretized in space by the finite element method and in time by Euler-implicit scheme. The solution is computed using a monolithic scheme within the open-source computational framework FEniCS. The parameters calibration is based on Sobol sensitivity analysis, which divides them into two groups: the tissue specific group, whose parameters represent general properties, and sample specific group, whose parameters have greater variations. Our results show that the experimental curves can be reproduced without the need to resort to viscous solid effects, by adding an additional fluid phase. Through this process, we aim to present multiphase poromechanics as a promising way to a unified brain tissue modeling framework in a variety of settings.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2021.104952</identifier><identifier>PMID: 34906865</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Biomechanics ; Brain tissue ; Elasticity ; Engineering Sciences ; Extracellular Fluid ; Finite Element Analysis ; Mechanical testing ; Mechanics ; Poromechanics ; Porosity ; Viscosity</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2022-02, Vol.126, p.104952-104952, Article 104952</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5c2770988a87fd8de05f14b151d6e98f00a809f96ab4f69f945fd19c865ae35e3</citedby><cites>FETCH-LOGICAL-c438t-5c2770988a87fd8de05f14b151d6e98f00a809f96ab4f69f945fd19c865ae35e3</cites><orcidid>0000-0002-5164-5904 ; 0000-0001-6171-7724 ; 0000-0001-8634-7002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S175161612100583X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34906865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03480446$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Urcun, Stéphane</creatorcontrib><creatorcontrib>Rohan, Pierre-Yves</creatorcontrib><creatorcontrib>Sciumè, Giuseppe</creatorcontrib><creatorcontrib>Bordas, Stéphane P.A.</creatorcontrib><title>Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle time-dependent uniaxial loading, confined and unconfined, with various geometries and loading rates from 1μm/s to 100μm/s. The cortex tissue is modeled as the porous solid saturated by two immiscible fluids, with dynamic viscosities separated by four orders, resulting in two different characteristic times. These are respectively associated to interstitial fluid and glial cells. The partial differential equations system is discretized in space by the finite element method and in time by Euler-implicit scheme. The solution is computed using a monolithic scheme within the open-source computational framework FEniCS. The parameters calibration is based on Sobol sensitivity analysis, which divides them into two groups: the tissue specific group, whose parameters represent general properties, and sample specific group, whose parameters have greater variations. Our results show that the experimental curves can be reproduced without the need to resort to viscous solid effects, by adding an additional fluid phase. Through this process, we aim to present multiphase poromechanics as a promising way to a unified brain tissue modeling framework in a variety of settings.</description><subject>Biomechanics</subject><subject>Brain tissue</subject><subject>Elasticity</subject><subject>Engineering Sciences</subject><subject>Extracellular Fluid</subject><subject>Finite Element Analysis</subject><subject>Mechanical testing</subject><subject>Mechanics</subject><subject>Poromechanics</subject><subject>Porosity</subject><subject>Viscosity</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhSMEoqXwC5CQj3DIdpw4jnPgUK0KRVqpF3q2HHusepXEwXa63X-Pt2l77GlGo2_eaN4riq8UNhQov9xv9mPfj5sKKponrGuqd8U5Fa0ogQp4n_u2oSWnnJ4Vn2LcA3AAIT4WZzXrgAvenBeHrQ8JH0lyMS5IAg7qUSXnJ6ImQ-LgDyR5MqJxy0gGrwwJKmEkBmecDE76SLSaSI-5zGkJaEh_JIqkgy_nexWR2JPG7IPP0jE5TUZvcPhcfLBqiPjluV4Ud7-u_25vyt3t7z_bq12pWS1S2eiqbaETQonWGmEQGktZTxtqOHbCAigBne246pnluWGNNbTT-TeFdYP1RfFj1b1Xg5yDG1U4Sq-cvLnaydMMaiaAMf5AM_t9Zefg_y0Ykxxd1DgMakK_RFnx7DKFru0yWq-oDj7GgPZVm4I8pSP38ikdeUpHrunkrW_PB5Y-W_q68xJHBn6uAGZLHhwGGbXLJmf7A-okjXdvHvgPunOhqw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Urcun, Stéphane</creator><creator>Rohan, Pierre-Yves</creator><creator>Sciumè, Giuseppe</creator><creator>Bordas, Stéphane P.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5164-5904</orcidid><orcidid>https://orcid.org/0000-0001-6171-7724</orcidid><orcidid>https://orcid.org/0000-0001-8634-7002</orcidid></search><sort><creationdate>20220201</creationdate><title>Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model</title><author>Urcun, Stéphane ; Rohan, Pierre-Yves ; Sciumè, Giuseppe ; Bordas, Stéphane P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5c2770988a87fd8de05f14b151d6e98f00a809f96ab4f69f945fd19c865ae35e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomechanics</topic><topic>Brain tissue</topic><topic>Elasticity</topic><topic>Engineering Sciences</topic><topic>Extracellular Fluid</topic><topic>Finite Element Analysis</topic><topic>Mechanical testing</topic><topic>Mechanics</topic><topic>Poromechanics</topic><topic>Porosity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urcun, Stéphane</creatorcontrib><creatorcontrib>Rohan, Pierre-Yves</creatorcontrib><creatorcontrib>Sciumè, Giuseppe</creatorcontrib><creatorcontrib>Bordas, Stéphane P.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urcun, Stéphane</au><au>Rohan, Pierre-Yves</au><au>Sciumè, Giuseppe</au><au>Bordas, Stéphane P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>126</volume><spage>104952</spage><epage>104952</epage><pages>104952-104952</pages><artnum>104952</artnum><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle time-dependent uniaxial loading, confined and unconfined, with various geometries and loading rates from 1μm/s to 100μm/s. The cortex tissue is modeled as the porous solid saturated by two immiscible fluids, with dynamic viscosities separated by four orders, resulting in two different characteristic times. These are respectively associated to interstitial fluid and glial cells. The partial differential equations system is discretized in space by the finite element method and in time by Euler-implicit scheme. The solution is computed using a monolithic scheme within the open-source computational framework FEniCS. The parameters calibration is based on Sobol sensitivity analysis, which divides them into two groups: the tissue specific group, whose parameters represent general properties, and sample specific group, whose parameters have greater variations. Our results show that the experimental curves can be reproduced without the need to resort to viscous solid effects, by adding an additional fluid phase. Through this process, we aim to present multiphase poromechanics as a promising way to a unified brain tissue modeling framework in a variety of settings.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34906865</pmid><doi>10.1016/j.jmbbm.2021.104952</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5164-5904</orcidid><orcidid>https://orcid.org/0000-0001-6171-7724</orcidid><orcidid>https://orcid.org/0000-0001-8634-7002</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2022-02, Vol.126, p.104952-104952, Article 104952
issn 1751-6161
1878-0180
language eng
recordid cdi_hal_primary_oai_HAL_hal_03480446v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biomechanics
Brain tissue
Elasticity
Engineering Sciences
Extracellular Fluid
Finite Element Analysis
Mechanical testing
Mechanics
Poromechanics
Porosity
Viscosity
title Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortex%20tissue%20relaxation%20and%20slow%20to%20medium%20load%20rates%20dependency%20can%20be%20captured%20by%20a%20two-phase%20flow%20poroelastic%20model&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Urcun,%20St%C3%A9phane&rft.date=2022-02-01&rft.volume=126&rft.spage=104952&rft.epage=104952&rft.pages=104952-104952&rft.artnum=104952&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2021.104952&rft_dat=%3Cproquest_hal_p%3E2610410979%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610410979&rft_id=info:pmid/34906865&rft_els_id=S175161612100583X&rfr_iscdi=true