Evaluation of Maturation in Preterm Infants Through an Ensemble Machine Learning Algorithm Using Physiological Signals
This study was designed to test if heart rate variability (HRV) data from preterm and full-term infants could be used to estimate their functional maturational age (FMA), using a machine learning model. We propose that the FMA, and its deviation from the postmenstrual age (PMA) of the infants could...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2022-01, Vol.26 (1), p.400-410 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!