Evaluation of Maturation in Preterm Infants Through an Ensemble Machine Learning Algorithm Using Physiological Signals

This study was designed to test if heart rate variability (HRV) data from preterm and full-term infants could be used to estimate their functional maturational age (FMA), using a machine learning model. We propose that the FMA, and its deviation from the postmenstrual age (PMA) of the infants could...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-01, Vol.26 (1), p.400-410
Hauptverfasser: Leon, Cristhyne, Cabon, Sandie, Patural, Hugues, Gascoin, Geraldine, Flamant, Cyril, Roue, Jean-Michel, Favrais, Geraldine, Beuchee, Alain, Pladys, Patrick, Carrault, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!