Evaluation of Maturation in Preterm Infants Through an Ensemble Machine Learning Algorithm Using Physiological Signals

This study was designed to test if heart rate variability (HRV) data from preterm and full-term infants could be used to estimate their functional maturational age (FMA), using a machine learning model. We propose that the FMA, and its deviation from the postmenstrual age (PMA) of the infants could...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-01, Vol.26 (1), p.400-410
Hauptverfasser: Leon, Cristhyne, Cabon, Sandie, Patural, Hugues, Gascoin, Geraldine, Flamant, Cyril, Roue, Jean-Michel, Favrais, Geraldine, Beuchee, Alain, Pladys, Patrick, Carrault, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 1
container_start_page 400
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator Leon, Cristhyne
Cabon, Sandie
Patural, Hugues
Gascoin, Geraldine
Flamant, Cyril
Roue, Jean-Michel
Favrais, Geraldine
Beuchee, Alain
Pladys, Patrick
Carrault, Guy
description This study was designed to test if heart rate variability (HRV) data from preterm and full-term infants could be used to estimate their functional maturational age (FMA), using a machine learning model. We propose that the FMA, and its deviation from the postmenstrual age (PMA) of the infants could inform physicians about the progress of the maturation of the infants. The HRV data was acquired from 50 healthy infants, born between 25 and 41 weeks of gestational age, who did not present any signs of abnormal maturation relative to their age group during the period of observation. The HRV features were used as input for a machine learning model that uses filtering and genetic algorithms for feature selection, and an ensemble machine learning (EML) algorithm, which combines linear and random forest regressions, to produce as output a FMA. Using HRV data, the FMA had a mean absolute error of 0.93 weeks, 95% CI [0.78, 1.08], compared to the PMA. These results demonstrate that HRV features of newborn infants can be used by an EML model to estimate their FMA. This method was also generalized using respiration rate variability (RRV) and bradycardia data, obtaining similar results. The FMA, predicted either by HRV, RRV or bradycardia, and its deviation from the true PMA of the infants, could be used as a surrogate measure of the maturational age of the infants, which could potentially be monitored non-invasively and in real-time in the setting of neonatal intensive care units.
doi_str_mv 10.1109/JBHI.2021.3093096
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03480247v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9468397</ieee_id><sourcerecordid>2621066303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-4624a59e51ee66877a9023a91c8260fb8a4acb3b50e8074b641d167cf95d7e853</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhk1paUKaH1AKRdBLc9iNvixLx23YZLdsaKDJWcjesa1gS6lkL-TfR8abPVQMjGb0vIOGN8u-ErwkBKvr37822yXFlCwZVinEh-ycEiEXlGL58f1OFD_LLmN8xunI1FLic3bGOJG5yOl5dlgfTDeawXqHfI3uzTCGubIOPQQYIPRo62rjhoge2-DHpkXGobWL0JcdJEXVWgdoByY46xq06hof7ND26ClO9UP7Gq3vfGMr06G_tnGmi1-yT3VKcHnMF9nT7frxZrPY_bnb3qx2i4pTMSy4oNzkCnICIIQsCqMwZUaRSlKB61IabqqSlTkGiQteCk72RBRVrfJ9ATJnF9nVPLc1nX4JtjfhVXtj9Wa101MPMy4x5cWBJPbnzL4E_2-EOOjexgq6zjjwY9Q050IVklOc0B__oc9-DNNimgpKsBAMs0SRmaqCjzFAffoBwXryUE8e6slDffQwab4fJ49lD_uT4t2xBHybAQsAp2fFhWSqYG-3hJ53</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621066303</pqid></control><display><type>article</type><title>Evaluation of Maturation in Preterm Infants Through an Ensemble Machine Learning Algorithm Using Physiological Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Leon, Cristhyne ; Cabon, Sandie ; Patural, Hugues ; Gascoin, Geraldine ; Flamant, Cyril ; Roue, Jean-Michel ; Favrais, Geraldine ; Beuchee, Alain ; Pladys, Patrick ; Carrault, Guy</creator><creatorcontrib>Leon, Cristhyne ; Cabon, Sandie ; Patural, Hugues ; Gascoin, Geraldine ; Flamant, Cyril ; Roue, Jean-Michel ; Favrais, Geraldine ; Beuchee, Alain ; Pladys, Patrick ; Carrault, Guy</creatorcontrib><description>This study was designed to test if heart rate variability (HRV) data from preterm and full-term infants could be used to estimate their functional maturational age (FMA), using a machine learning model. We propose that the FMA, and its deviation from the postmenstrual age (PMA) of the infants could inform physicians about the progress of the maturation of the infants. The HRV data was acquired from 50 healthy infants, born between 25 and 41 weeks of gestational age, who did not present any signs of abnormal maturation relative to their age group during the period of observation. The HRV features were used as input for a machine learning model that uses filtering and genetic algorithms for feature selection, and an ensemble machine learning (EML) algorithm, which combines linear and random forest regressions, to produce as output a FMA. Using HRV data, the FMA had a mean absolute error of 0.93 weeks, 95% CI [0.78, 1.08], compared to the PMA. These results demonstrate that HRV features of newborn infants can be used by an EML model to estimate their FMA. This method was also generalized using respiration rate variability (RRV) and bradycardia data, obtaining similar results. The FMA, predicted either by HRV, RRV or bradycardia, and its deviation from the true PMA of the infants, could be used as a surrogate measure of the maturational age of the infants, which could potentially be monitored non-invasively and in real-time in the setting of neonatal intensive care units.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3093096</identifier><identifier>PMID: 34185652</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Age ; Algorithms ; Bioengineering ; Bradycardia ; Cardiac arrhythmia ; Data acquisition ; Deviation ; Ensemble machine learning ; Feature extraction ; genetic algorithm ; Genetic algorithms ; Gestational Age ; Heart rate ; Heart Rate - physiology ; Heart rate variability ; Hospitals ; Humans ; Infant ; Infant, Newborn ; Infant, Premature - physiology ; Infants ; Intensive care units ; Learning algorithms ; Life Sciences ; Machine Learning ; Maturation ; Neonates ; Pediatrics ; Physicians ; Premature babies ; premature infants ; respiration rate ; Sociology ; Statistics</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-01, Vol.26 (1), p.400-410</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-4624a59e51ee66877a9023a91c8260fb8a4acb3b50e8074b641d167cf95d7e853</citedby><cites>FETCH-LOGICAL-c426t-4624a59e51ee66877a9023a91c8260fb8a4acb3b50e8074b641d167cf95d7e853</cites><orcidid>0000-0002-4305-3765 ; 0000-0003-1482-2067 ; 0000-0002-7322-4983 ; 0000-0003-0064-7085 ; 0000-0001-7847-0916 ; 0000-0002-5359-6544 ; 0000-0002-2665-8244 ; 0000-0003-3984-6356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9468397$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9468397$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34185652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03480247$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leon, Cristhyne</creatorcontrib><creatorcontrib>Cabon, Sandie</creatorcontrib><creatorcontrib>Patural, Hugues</creatorcontrib><creatorcontrib>Gascoin, Geraldine</creatorcontrib><creatorcontrib>Flamant, Cyril</creatorcontrib><creatorcontrib>Roue, Jean-Michel</creatorcontrib><creatorcontrib>Favrais, Geraldine</creatorcontrib><creatorcontrib>Beuchee, Alain</creatorcontrib><creatorcontrib>Pladys, Patrick</creatorcontrib><creatorcontrib>Carrault, Guy</creatorcontrib><title>Evaluation of Maturation in Preterm Infants Through an Ensemble Machine Learning Algorithm Using Physiological Signals</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>This study was designed to test if heart rate variability (HRV) data from preterm and full-term infants could be used to estimate their functional maturational age (FMA), using a machine learning model. We propose that the FMA, and its deviation from the postmenstrual age (PMA) of the infants could inform physicians about the progress of the maturation of the infants. The HRV data was acquired from 50 healthy infants, born between 25 and 41 weeks of gestational age, who did not present any signs of abnormal maturation relative to their age group during the period of observation. The HRV features were used as input for a machine learning model that uses filtering and genetic algorithms for feature selection, and an ensemble machine learning (EML) algorithm, which combines linear and random forest regressions, to produce as output a FMA. Using HRV data, the FMA had a mean absolute error of 0.93 weeks, 95% CI [0.78, 1.08], compared to the PMA. These results demonstrate that HRV features of newborn infants can be used by an EML model to estimate their FMA. This method was also generalized using respiration rate variability (RRV) and bradycardia data, obtaining similar results. The FMA, predicted either by HRV, RRV or bradycardia, and its deviation from the true PMA of the infants, could be used as a surrogate measure of the maturational age of the infants, which could potentially be monitored non-invasively and in real-time in the setting of neonatal intensive care units.</description><subject>Age</subject><subject>Algorithms</subject><subject>Bioengineering</subject><subject>Bradycardia</subject><subject>Cardiac arrhythmia</subject><subject>Data acquisition</subject><subject>Deviation</subject><subject>Ensemble machine learning</subject><subject>Feature extraction</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Gestational Age</subject><subject>Heart rate</subject><subject>Heart Rate - physiology</subject><subject>Heart rate variability</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Infant, Premature - physiology</subject><subject>Infants</subject><subject>Intensive care units</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Maturation</subject><subject>Neonates</subject><subject>Pediatrics</subject><subject>Physicians</subject><subject>Premature babies</subject><subject>premature infants</subject><subject>respiration rate</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1r3DAQhk1paUKaH1AKRdBLc9iNvixLx23YZLdsaKDJWcjesa1gS6lkL-TfR8abPVQMjGb0vIOGN8u-ErwkBKvr37822yXFlCwZVinEh-ycEiEXlGL58f1OFD_LLmN8xunI1FLic3bGOJG5yOl5dlgfTDeawXqHfI3uzTCGubIOPQQYIPRo62rjhoge2-DHpkXGobWL0JcdJEXVWgdoByY46xq06hof7ND26ClO9UP7Gq3vfGMr06G_tnGmi1-yT3VKcHnMF9nT7frxZrPY_bnb3qx2i4pTMSy4oNzkCnICIIQsCqMwZUaRSlKB61IabqqSlTkGiQteCk72RBRVrfJ9ATJnF9nVPLc1nX4JtjfhVXtj9Wa101MPMy4x5cWBJPbnzL4E_2-EOOjexgq6zjjwY9Q050IVklOc0B__oc9-DNNimgpKsBAMs0SRmaqCjzFAffoBwXryUE8e6slDffQwab4fJ49lD_uT4t2xBHybAQsAp2fFhWSqYG-3hJ53</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Leon, Cristhyne</creator><creator>Cabon, Sandie</creator><creator>Patural, Hugues</creator><creator>Gascoin, Geraldine</creator><creator>Flamant, Cyril</creator><creator>Roue, Jean-Michel</creator><creator>Favrais, Geraldine</creator><creator>Beuchee, Alain</creator><creator>Pladys, Patrick</creator><creator>Carrault, Guy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4305-3765</orcidid><orcidid>https://orcid.org/0000-0003-1482-2067</orcidid><orcidid>https://orcid.org/0000-0002-7322-4983</orcidid><orcidid>https://orcid.org/0000-0003-0064-7085</orcidid><orcidid>https://orcid.org/0000-0001-7847-0916</orcidid><orcidid>https://orcid.org/0000-0002-5359-6544</orcidid><orcidid>https://orcid.org/0000-0002-2665-8244</orcidid><orcidid>https://orcid.org/0000-0003-3984-6356</orcidid></search><sort><creationdate>202201</creationdate><title>Evaluation of Maturation in Preterm Infants Through an Ensemble Machine Learning Algorithm Using Physiological Signals</title><author>Leon, Cristhyne ; Cabon, Sandie ; Patural, Hugues ; Gascoin, Geraldine ; Flamant, Cyril ; Roue, Jean-Michel ; Favrais, Geraldine ; Beuchee, Alain ; Pladys, Patrick ; Carrault, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-4624a59e51ee66877a9023a91c8260fb8a4acb3b50e8074b641d167cf95d7e853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>Algorithms</topic><topic>Bioengineering</topic><topic>Bradycardia</topic><topic>Cardiac arrhythmia</topic><topic>Data acquisition</topic><topic>Deviation</topic><topic>Ensemble machine learning</topic><topic>Feature extraction</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Gestational Age</topic><topic>Heart rate</topic><topic>Heart Rate - physiology</topic><topic>Heart rate variability</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Infant, Premature - physiology</topic><topic>Infants</topic><topic>Intensive care units</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Maturation</topic><topic>Neonates</topic><topic>Pediatrics</topic><topic>Physicians</topic><topic>Premature babies</topic><topic>premature infants</topic><topic>respiration rate</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leon, Cristhyne</creatorcontrib><creatorcontrib>Cabon, Sandie</creatorcontrib><creatorcontrib>Patural, Hugues</creatorcontrib><creatorcontrib>Gascoin, Geraldine</creatorcontrib><creatorcontrib>Flamant, Cyril</creatorcontrib><creatorcontrib>Roue, Jean-Michel</creatorcontrib><creatorcontrib>Favrais, Geraldine</creatorcontrib><creatorcontrib>Beuchee, Alain</creatorcontrib><creatorcontrib>Pladys, Patrick</creatorcontrib><creatorcontrib>Carrault, Guy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leon, Cristhyne</au><au>Cabon, Sandie</au><au>Patural, Hugues</au><au>Gascoin, Geraldine</au><au>Flamant, Cyril</au><au>Roue, Jean-Michel</au><au>Favrais, Geraldine</au><au>Beuchee, Alain</au><au>Pladys, Patrick</au><au>Carrault, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Maturation in Preterm Infants Through an Ensemble Machine Learning Algorithm Using Physiological Signals</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-01</date><risdate>2022</risdate><volume>26</volume><issue>1</issue><spage>400</spage><epage>410</epage><pages>400-410</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>This study was designed to test if heart rate variability (HRV) data from preterm and full-term infants could be used to estimate their functional maturational age (FMA), using a machine learning model. We propose that the FMA, and its deviation from the postmenstrual age (PMA) of the infants could inform physicians about the progress of the maturation of the infants. The HRV data was acquired from 50 healthy infants, born between 25 and 41 weeks of gestational age, who did not present any signs of abnormal maturation relative to their age group during the period of observation. The HRV features were used as input for a machine learning model that uses filtering and genetic algorithms for feature selection, and an ensemble machine learning (EML) algorithm, which combines linear and random forest regressions, to produce as output a FMA. Using HRV data, the FMA had a mean absolute error of 0.93 weeks, 95% CI [0.78, 1.08], compared to the PMA. These results demonstrate that HRV features of newborn infants can be used by an EML model to estimate their FMA. This method was also generalized using respiration rate variability (RRV) and bradycardia data, obtaining similar results. The FMA, predicted either by HRV, RRV or bradycardia, and its deviation from the true PMA of the infants, could be used as a surrogate measure of the maturational age of the infants, which could potentially be monitored non-invasively and in real-time in the setting of neonatal intensive care units.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34185652</pmid><doi>10.1109/JBHI.2021.3093096</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4305-3765</orcidid><orcidid>https://orcid.org/0000-0003-1482-2067</orcidid><orcidid>https://orcid.org/0000-0002-7322-4983</orcidid><orcidid>https://orcid.org/0000-0003-0064-7085</orcidid><orcidid>https://orcid.org/0000-0001-7847-0916</orcidid><orcidid>https://orcid.org/0000-0002-5359-6544</orcidid><orcidid>https://orcid.org/0000-0002-2665-8244</orcidid><orcidid>https://orcid.org/0000-0003-3984-6356</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2022-01, Vol.26 (1), p.400-410
issn 2168-2194
2168-2208
language eng
recordid cdi_hal_primary_oai_HAL_hal_03480247v1
source IEEE Electronic Library (IEL)
subjects Age
Algorithms
Bioengineering
Bradycardia
Cardiac arrhythmia
Data acquisition
Deviation
Ensemble machine learning
Feature extraction
genetic algorithm
Genetic algorithms
Gestational Age
Heart rate
Heart Rate - physiology
Heart rate variability
Hospitals
Humans
Infant
Infant, Newborn
Infant, Premature - physiology
Infants
Intensive care units
Learning algorithms
Life Sciences
Machine Learning
Maturation
Neonates
Pediatrics
Physicians
Premature babies
premature infants
respiration rate
Sociology
Statistics
title Evaluation of Maturation in Preterm Infants Through an Ensemble Machine Learning Algorithm Using Physiological Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Maturation%20in%20Preterm%20Infants%20Through%20an%20Ensemble%20Machine%20Learning%20Algorithm%20Using%20Physiological%20Signals&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Leon,%20Cristhyne&rft.date=2022-01&rft.volume=26&rft.issue=1&rft.spage=400&rft.epage=410&rft.pages=400-410&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3093096&rft_dat=%3Cproquest_RIE%3E2621066303%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621066303&rft_id=info:pmid/34185652&rft_ieee_id=9468397&rfr_iscdi=true