Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids

Even though reversible interactions within ionic hydrogels are well-studied, underlying mechanisms responsible for the high-value added performance of ionic nanocomposites remain almost unexplored. We herein propose a fundamental understanding aiming at elucidating the mechanism behind the reversibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied polymer materials 2021-12, Vol.3 (12), p.6684-6693
Hauptverfasser: Potaufeux, Jean-Emile, Odent, Jérémy, Notta-Cuvier, Delphine, Barrau, Sophie, Magnani, Chiara, Delille, Rémi, Zhang, Chunbo, Liu, Guoming, Giannelis, Emmanuel P, Müller, Alejandro J, Lauro, Franck, Raquez, Jean-Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6693
container_issue 12
container_start_page 6684
container_title ACS applied polymer materials
container_volume 3
creator Potaufeux, Jean-Emile
Odent, Jérémy
Notta-Cuvier, Delphine
Barrau, Sophie
Magnani, Chiara
Delille, Rémi
Zhang, Chunbo
Liu, Guoming
Giannelis, Emmanuel P
Müller, Alejandro J
Lauro, Franck
Raquez, Jean-Marie
description Even though reversible interactions within ionic hydrogels are well-studied, underlying mechanisms responsible for the high-value added performance of ionic nanocomposites remain almost unexplored. We herein propose a fundamental understanding aiming at elucidating the mechanism behind the reversible breaking and reformation of ionic bonding in the case of organic–inorganic hybrids made of a combination of imidazolium-functionalized poly­(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonate silica nanoparticles (SiO2–SO3H). Such ionic hybrids already demonstrated unique features related to the presence of electrostatic interactions, but the underlying mechanisms governing the overall material performance have never been discussed. To dissociate the reinforcement role of nanoparticles and ionic interactions, either standard nonionic SiO2 or ionic SiO2–SO3H nanoparticles were introduced into im-PU. Mechanical performances, thermal transitions, relaxation processes, and the morphology of the hybrids were deeply investigated to better comprehend the mechanisms at the origin of the ionic material reinforcement. In addition, a mechanistic investigation is proposed to quantify the dissipation energy ability of the as-proposed ionic hybrids, and an approach is presented to identify a characteristic time for restoration of reversible ionic bonds under different loading scenarios.
doi_str_mv 10.1021/acsapm.1c01396
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03476769v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g7108140</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-e735cfee71416afaf4cfdfa1f85598cce8752d6dde63abd306d2231ce2a202c43</originalsourceid><addsrcrecordid>eNp1kM1rwkAUxJfSQsV67XmvLSTuR7JJjiJtI7Uo2J6X537oSszKrhb87xuJlF56esMwv4E3CD1SklLC6BhUhMM-pYpQXokbNGCCF4mgJL_9o-_RKMYdIR3BMpazAXr_gHg0wbUbvDodOuEDXppgfdhDqwxeBLdxbcTe4plvncJL35xPwRy30JrxyjVOAa7P6-B0fEB3FppoRtc7RF-vL5_TOpkv3mbTyTwBTspjYgqeK2tMQTMqwILNlNUWqC3zvCqVMmWRMy20NoLDWnMiNGOcKsOAEaYyPkRPfe8WGnkIbg_hLD04WU_m8uIRnhWiENU37bJpn1XBxxiM_QUokZflZL-cvC7XAc890Ply50-h7V75L_wDFtxxEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids</title><source>ACS Publications</source><creator>Potaufeux, Jean-Emile ; Odent, Jérémy ; Notta-Cuvier, Delphine ; Barrau, Sophie ; Magnani, Chiara ; Delille, Rémi ; Zhang, Chunbo ; Liu, Guoming ; Giannelis, Emmanuel P ; Müller, Alejandro J ; Lauro, Franck ; Raquez, Jean-Marie</creator><creatorcontrib>Potaufeux, Jean-Emile ; Odent, Jérémy ; Notta-Cuvier, Delphine ; Barrau, Sophie ; Magnani, Chiara ; Delille, Rémi ; Zhang, Chunbo ; Liu, Guoming ; Giannelis, Emmanuel P ; Müller, Alejandro J ; Lauro, Franck ; Raquez, Jean-Marie</creatorcontrib><description>Even though reversible interactions within ionic hydrogels are well-studied, underlying mechanisms responsible for the high-value added performance of ionic nanocomposites remain almost unexplored. We herein propose a fundamental understanding aiming at elucidating the mechanism behind the reversible breaking and reformation of ionic bonding in the case of organic–inorganic hybrids made of a combination of imidazolium-functionalized poly­(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonate silica nanoparticles (SiO2–SO3H). Such ionic hybrids already demonstrated unique features related to the presence of electrostatic interactions, but the underlying mechanisms governing the overall material performance have never been discussed. To dissociate the reinforcement role of nanoparticles and ionic interactions, either standard nonionic SiO2 or ionic SiO2–SO3H nanoparticles were introduced into im-PU. Mechanical performances, thermal transitions, relaxation processes, and the morphology of the hybrids were deeply investigated to better comprehend the mechanisms at the origin of the ionic material reinforcement. In addition, a mechanistic investigation is proposed to quantify the dissipation energy ability of the as-proposed ionic hybrids, and an approach is presented to identify a characteristic time for restoration of reversible ionic bonds under different loading scenarios.</description><identifier>ISSN: 2637-6105</identifier><identifier>EISSN: 2637-6105</identifier><identifier>DOI: 10.1021/acsapm.1c01396</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Material chemistry ; Polymers</subject><ispartof>ACS applied polymer materials, 2021-12, Vol.3 (12), p.6684-6693</ispartof><rights>2021 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a308t-e735cfee71416afaf4cfdfa1f85598cce8752d6dde63abd306d2231ce2a202c43</citedby><cites>FETCH-LOGICAL-a308t-e735cfee71416afaf4cfdfa1f85598cce8752d6dde63abd306d2231ce2a202c43</cites><orcidid>0000-0002-3038-846X ; 0000-0003-2808-2661 ; 0000-0001-7009-7715 ; 0000-0002-6125-2207 ; 0000-0003-1940-7129 ; 0000-0003-0850-3000 ; 0000-0003-4790-9994 ; 0000-0002-1830-9060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsapm.1c01396$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsapm.1c01396$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://hal.univ-lille.fr/hal-03476769$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Potaufeux, Jean-Emile</creatorcontrib><creatorcontrib>Odent, Jérémy</creatorcontrib><creatorcontrib>Notta-Cuvier, Delphine</creatorcontrib><creatorcontrib>Barrau, Sophie</creatorcontrib><creatorcontrib>Magnani, Chiara</creatorcontrib><creatorcontrib>Delille, Rémi</creatorcontrib><creatorcontrib>Zhang, Chunbo</creatorcontrib><creatorcontrib>Liu, Guoming</creatorcontrib><creatorcontrib>Giannelis, Emmanuel P</creatorcontrib><creatorcontrib>Müller, Alejandro J</creatorcontrib><creatorcontrib>Lauro, Franck</creatorcontrib><creatorcontrib>Raquez, Jean-Marie</creatorcontrib><title>Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids</title><title>ACS applied polymer materials</title><addtitle>ACS Appl. Polym. Mater</addtitle><description>Even though reversible interactions within ionic hydrogels are well-studied, underlying mechanisms responsible for the high-value added performance of ionic nanocomposites remain almost unexplored. We herein propose a fundamental understanding aiming at elucidating the mechanism behind the reversible breaking and reformation of ionic bonding in the case of organic–inorganic hybrids made of a combination of imidazolium-functionalized poly­(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonate silica nanoparticles (SiO2–SO3H). Such ionic hybrids already demonstrated unique features related to the presence of electrostatic interactions, but the underlying mechanisms governing the overall material performance have never been discussed. To dissociate the reinforcement role of nanoparticles and ionic interactions, either standard nonionic SiO2 or ionic SiO2–SO3H nanoparticles were introduced into im-PU. Mechanical performances, thermal transitions, relaxation processes, and the morphology of the hybrids were deeply investigated to better comprehend the mechanisms at the origin of the ionic material reinforcement. In addition, a mechanistic investigation is proposed to quantify the dissipation energy ability of the as-proposed ionic hybrids, and an approach is presented to identify a characteristic time for restoration of reversible ionic bonds under different loading scenarios.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><subject>Polymers</subject><issn>2637-6105</issn><issn>2637-6105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1rwkAUxJfSQsV67XmvLSTuR7JJjiJtI7Uo2J6X537oSszKrhb87xuJlF56esMwv4E3CD1SklLC6BhUhMM-pYpQXokbNGCCF4mgJL_9o-_RKMYdIR3BMpazAXr_gHg0wbUbvDodOuEDXppgfdhDqwxeBLdxbcTe4plvncJL35xPwRy30JrxyjVOAa7P6-B0fEB3FppoRtc7RF-vL5_TOpkv3mbTyTwBTspjYgqeK2tMQTMqwILNlNUWqC3zvCqVMmWRMy20NoLDWnMiNGOcKsOAEaYyPkRPfe8WGnkIbg_hLD04WU_m8uIRnhWiENU37bJpn1XBxxiM_QUokZflZL-cvC7XAc890Ply50-h7V75L_wDFtxxEQ</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>Potaufeux, Jean-Emile</creator><creator>Odent, Jérémy</creator><creator>Notta-Cuvier, Delphine</creator><creator>Barrau, Sophie</creator><creator>Magnani, Chiara</creator><creator>Delille, Rémi</creator><creator>Zhang, Chunbo</creator><creator>Liu, Guoming</creator><creator>Giannelis, Emmanuel P</creator><creator>Müller, Alejandro J</creator><creator>Lauro, Franck</creator><creator>Raquez, Jean-Marie</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3038-846X</orcidid><orcidid>https://orcid.org/0000-0003-2808-2661</orcidid><orcidid>https://orcid.org/0000-0001-7009-7715</orcidid><orcidid>https://orcid.org/0000-0002-6125-2207</orcidid><orcidid>https://orcid.org/0000-0003-1940-7129</orcidid><orcidid>https://orcid.org/0000-0003-0850-3000</orcidid><orcidid>https://orcid.org/0000-0003-4790-9994</orcidid><orcidid>https://orcid.org/0000-0002-1830-9060</orcidid></search><sort><creationdate>20211210</creationdate><title>Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids</title><author>Potaufeux, Jean-Emile ; Odent, Jérémy ; Notta-Cuvier, Delphine ; Barrau, Sophie ; Magnani, Chiara ; Delille, Rémi ; Zhang, Chunbo ; Liu, Guoming ; Giannelis, Emmanuel P ; Müller, Alejandro J ; Lauro, Franck ; Raquez, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-e735cfee71416afaf4cfdfa1f85598cce8752d6dde63abd306d2231ce2a202c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potaufeux, Jean-Emile</creatorcontrib><creatorcontrib>Odent, Jérémy</creatorcontrib><creatorcontrib>Notta-Cuvier, Delphine</creatorcontrib><creatorcontrib>Barrau, Sophie</creatorcontrib><creatorcontrib>Magnani, Chiara</creatorcontrib><creatorcontrib>Delille, Rémi</creatorcontrib><creatorcontrib>Zhang, Chunbo</creatorcontrib><creatorcontrib>Liu, Guoming</creatorcontrib><creatorcontrib>Giannelis, Emmanuel P</creatorcontrib><creatorcontrib>Müller, Alejandro J</creatorcontrib><creatorcontrib>Lauro, Franck</creatorcontrib><creatorcontrib>Raquez, Jean-Marie</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS applied polymer materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potaufeux, Jean-Emile</au><au>Odent, Jérémy</au><au>Notta-Cuvier, Delphine</au><au>Barrau, Sophie</au><au>Magnani, Chiara</au><au>Delille, Rémi</au><au>Zhang, Chunbo</au><au>Liu, Guoming</au><au>Giannelis, Emmanuel P</au><au>Müller, Alejandro J</au><au>Lauro, Franck</au><au>Raquez, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids</atitle><jtitle>ACS applied polymer materials</jtitle><addtitle>ACS Appl. Polym. Mater</addtitle><date>2021-12-10</date><risdate>2021</risdate><volume>3</volume><issue>12</issue><spage>6684</spage><epage>6693</epage><pages>6684-6693</pages><issn>2637-6105</issn><eissn>2637-6105</eissn><abstract>Even though reversible interactions within ionic hydrogels are well-studied, underlying mechanisms responsible for the high-value added performance of ionic nanocomposites remain almost unexplored. We herein propose a fundamental understanding aiming at elucidating the mechanism behind the reversible breaking and reformation of ionic bonding in the case of organic–inorganic hybrids made of a combination of imidazolium-functionalized poly­(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonate silica nanoparticles (SiO2–SO3H). Such ionic hybrids already demonstrated unique features related to the presence of electrostatic interactions, but the underlying mechanisms governing the overall material performance have never been discussed. To dissociate the reinforcement role of nanoparticles and ionic interactions, either standard nonionic SiO2 or ionic SiO2–SO3H nanoparticles were introduced into im-PU. Mechanical performances, thermal transitions, relaxation processes, and the morphology of the hybrids were deeply investigated to better comprehend the mechanisms at the origin of the ionic material reinforcement. In addition, a mechanistic investigation is proposed to quantify the dissipation energy ability of the as-proposed ionic hybrids, and an approach is presented to identify a characteristic time for restoration of reversible ionic bonds under different loading scenarios.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsapm.1c01396</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3038-846X</orcidid><orcidid>https://orcid.org/0000-0003-2808-2661</orcidid><orcidid>https://orcid.org/0000-0001-7009-7715</orcidid><orcidid>https://orcid.org/0000-0002-6125-2207</orcidid><orcidid>https://orcid.org/0000-0003-1940-7129</orcidid><orcidid>https://orcid.org/0000-0003-0850-3000</orcidid><orcidid>https://orcid.org/0000-0003-4790-9994</orcidid><orcidid>https://orcid.org/0000-0002-1830-9060</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2637-6105
ispartof ACS applied polymer materials, 2021-12, Vol.3 (12), p.6684-6693
issn 2637-6105
2637-6105
language eng
recordid cdi_hal_primary_oai_HAL_hal_03476769v1
source ACS Publications
subjects Chemical Sciences
Material chemistry
Polymers
title Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mastering%20Superior%20Performance%20Origins%20of%20Ionic%20Polyurethane/Silica%20Hybrids&rft.jtitle=ACS%20applied%20polymer%20materials&rft.au=Potaufeux,%20Jean-Emile&rft.date=2021-12-10&rft.volume=3&rft.issue=12&rft.spage=6684&rft.epage=6693&rft.pages=6684-6693&rft.issn=2637-6105&rft.eissn=2637-6105&rft_id=info:doi/10.1021/acsapm.1c01396&rft_dat=%3Cacs_hal_p%3Eg7108140%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true