Role of nonlinearity in non-Hermitian quantum mechanics: Description of linear quantum electrodynamics from the nonlinear Schrödinger-Poisson equation

. In this paper we consider a basic two-level nonlinear quantum model consisting in a two-particle interacting bound-state system. It is described by means of two different approaches: i) the mean-field stationary nonlinear Schrödinger-Poisson equation with classical Coulomb interaction and harmonic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2016-07, Vol.131 (7), p.220, Article 220
Hauptverfasser: Reinisch, Gilbert C., Gazeau, Maxime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 220
container_title European physical journal plus
container_volume 131
creator Reinisch, Gilbert C.
Gazeau, Maxime
description . In this paper we consider a basic two-level nonlinear quantum model consisting in a two-particle interacting bound-state system. It is described by means of two different approaches: i) the mean-field stationary nonlinear Schrödinger-Poisson equation with classical Coulomb interaction and harmonic potential; ii) the linear quantum electrodynamics Hamiltonian of a quantized field coupled to two fixed charges. Computing numerically the ground state and the first excited state about the maximum eigenstate overlap (which is not zero because of eigenstate non-orthogonality), we numerically demonstrate that these two descriptions coincide at first order. As a consequence, a specific definition of the fine-structure constant is provided within 99.95% accuracy by the present first-order non-relativistic and nonlinear quantum description. This result also means that the internal Coulomb interaction commutes with external particle confinement for the calculation of the ground state. Consequently peculiar nonlinear quantum properties become observable (an experiment with GaAs quantum-dot helium is suggested).
doi_str_mv 10.1140/epjp/i2016-16220-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03476263v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919718837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5320e82a402505317664239fed26062fbdd229c862561c21ca3ff279259226e93</originalsourceid><addsrcrecordid>eNp9kU1O3DAYhiMEEgi4QFeWuuoijP3ZccbdIVo6SCO1Arq2jPOF8Sixg51BmpNwk16gF6tDKuiq3vhHz_vY8lsUHxi9YEzQBQ7bYeGAMlkyCUBLeVCcAFO0rIQQh_-sj4vzlLY0D6GYUOKkeLkNHZLQEh985zya6MY9cX7alyuMvRud8eRpZ_y460mPdmO8s-kz-YLJRjeMLvgpP4ffQOzQjjE0e2_6jJM2hp6MG3y_h9zZTfz9q3H-EWP5I7iUsgmzYFKeFUet6RKe_51Pi5_XX--vVuX6-7ebq8t1aXnFx7LiQHEJRlCoaMVZLaUArlpsQFIJ7UPTACi7lFBJZoFZw9sWagWVApCo-GnxafZuTKeH6HoT9zoYp1eXaz2dUS5qCZI_s8x-nNkhhqcdplFvwy76_DwNiqmaLZe8zhTMlI0hpYjtm5ZRPfWlp770a1_6tS8tc4jPoZTh6UPe1f9J_QE4Fpyn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919718837</pqid></control><display><type>article</type><title>Role of nonlinearity in non-Hermitian quantum mechanics: Description of linear quantum electrodynamics from the nonlinear Schrödinger-Poisson equation</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Reinisch, Gilbert C. ; Gazeau, Maxime</creator><creatorcontrib>Reinisch, Gilbert C. ; Gazeau, Maxime</creatorcontrib><description>. In this paper we consider a basic two-level nonlinear quantum model consisting in a two-particle interacting bound-state system. It is described by means of two different approaches: i) the mean-field stationary nonlinear Schrödinger-Poisson equation with classical Coulomb interaction and harmonic potential; ii) the linear quantum electrodynamics Hamiltonian of a quantized field coupled to two fixed charges. Computing numerically the ground state and the first excited state about the maximum eigenstate overlap (which is not zero because of eigenstate non-orthogonality), we numerically demonstrate that these two descriptions coincide at first order. As a consequence, a specific definition of the fine-structure constant is provided within 99.95% accuracy by the present first-order non-relativistic and nonlinear quantum description. This result also means that the internal Coulomb interaction commutes with external particle confinement for the calculation of the ground state. Consequently peculiar nonlinear quantum properties become observable (an experiment with GaAs quantum-dot helium is suggested).</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2016-16220-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Eigenvectors ; Fine structure ; Ground state ; Hamiltonian functions ; Helium ; Mathematical and Computational Physics ; Molecular ; Nonlinear Sciences ; Nonlinearity ; Optical and Plasma Physics ; Orthogonality ; Physics ; Physics and Astronomy ; Poisson equation ; Quantum dots ; Quantum electrodynamics ; Quantum mechanics ; Regular Article ; Theoretical</subject><ispartof>European physical journal plus, 2016-07, Vol.131 (7), p.220, Article 220</ispartof><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5320e82a402505317664239fed26062fbdd229c862561c21ca3ff279259226e93</citedby><cites>FETCH-LOGICAL-c353t-5320e82a402505317664239fed26062fbdd229c862561c21ca3ff279259226e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2016-16220-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919718837?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03476263$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Reinisch, Gilbert C.</creatorcontrib><creatorcontrib>Gazeau, Maxime</creatorcontrib><title>Role of nonlinearity in non-Hermitian quantum mechanics: Description of linear quantum electrodynamics from the nonlinear Schrödinger-Poisson equation</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. In this paper we consider a basic two-level nonlinear quantum model consisting in a two-particle interacting bound-state system. It is described by means of two different approaches: i) the mean-field stationary nonlinear Schrödinger-Poisson equation with classical Coulomb interaction and harmonic potential; ii) the linear quantum electrodynamics Hamiltonian of a quantized field coupled to two fixed charges. Computing numerically the ground state and the first excited state about the maximum eigenstate overlap (which is not zero because of eigenstate non-orthogonality), we numerically demonstrate that these two descriptions coincide at first order. As a consequence, a specific definition of the fine-structure constant is provided within 99.95% accuracy by the present first-order non-relativistic and nonlinear quantum description. This result also means that the internal Coulomb interaction commutes with external particle confinement for the calculation of the ground state. Consequently peculiar nonlinear quantum properties become observable (an experiment with GaAs quantum-dot helium is suggested).</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvectors</subject><subject>Fine structure</subject><subject>Ground state</subject><subject>Hamiltonian functions</subject><subject>Helium</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nonlinear Sciences</subject><subject>Nonlinearity</subject><subject>Optical and Plasma Physics</subject><subject>Orthogonality</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Poisson equation</subject><subject>Quantum dots</subject><subject>Quantum electrodynamics</subject><subject>Quantum mechanics</subject><subject>Regular Article</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1O3DAYhiMEEgi4QFeWuuoijP3ZccbdIVo6SCO1Arq2jPOF8Sixg51BmpNwk16gF6tDKuiq3vhHz_vY8lsUHxi9YEzQBQ7bYeGAMlkyCUBLeVCcAFO0rIQQh_-sj4vzlLY0D6GYUOKkeLkNHZLQEh985zya6MY9cX7alyuMvRud8eRpZ_y460mPdmO8s-kz-YLJRjeMLvgpP4ffQOzQjjE0e2_6jJM2hp6MG3y_h9zZTfz9q3H-EWP5I7iUsgmzYFKeFUet6RKe_51Pi5_XX--vVuX6-7ebq8t1aXnFx7LiQHEJRlCoaMVZLaUArlpsQFIJ7UPTACi7lFBJZoFZw9sWagWVApCo-GnxafZuTKeH6HoT9zoYp1eXaz2dUS5qCZI_s8x-nNkhhqcdplFvwy76_DwNiqmaLZe8zhTMlI0hpYjtm5ZRPfWlp770a1_6tS8tc4jPoZTh6UPe1f9J_QE4Fpyn</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Reinisch, Gilbert C.</creator><creator>Gazeau, Maxime</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope></search><sort><creationdate>20160701</creationdate><title>Role of nonlinearity in non-Hermitian quantum mechanics: Description of linear quantum electrodynamics from the nonlinear Schrödinger-Poisson equation</title><author>Reinisch, Gilbert C. ; Gazeau, Maxime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5320e82a402505317664239fed26062fbdd229c862561c21ca3ff279259226e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvectors</topic><topic>Fine structure</topic><topic>Ground state</topic><topic>Hamiltonian functions</topic><topic>Helium</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nonlinear Sciences</topic><topic>Nonlinearity</topic><topic>Optical and Plasma Physics</topic><topic>Orthogonality</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Poisson equation</topic><topic>Quantum dots</topic><topic>Quantum electrodynamics</topic><topic>Quantum mechanics</topic><topic>Regular Article</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinisch, Gilbert C.</creatorcontrib><creatorcontrib>Gazeau, Maxime</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinisch, Gilbert C.</au><au>Gazeau, Maxime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of nonlinearity in non-Hermitian quantum mechanics: Description of linear quantum electrodynamics from the nonlinear Schrödinger-Poisson equation</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>131</volume><issue>7</issue><spage>220</spage><pages>220-</pages><artnum>220</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. In this paper we consider a basic two-level nonlinear quantum model consisting in a two-particle interacting bound-state system. It is described by means of two different approaches: i) the mean-field stationary nonlinear Schrödinger-Poisson equation with classical Coulomb interaction and harmonic potential; ii) the linear quantum electrodynamics Hamiltonian of a quantized field coupled to two fixed charges. Computing numerically the ground state and the first excited state about the maximum eigenstate overlap (which is not zero because of eigenstate non-orthogonality), we numerically demonstrate that these two descriptions coincide at first order. As a consequence, a specific definition of the fine-structure constant is provided within 99.95% accuracy by the present first-order non-relativistic and nonlinear quantum description. This result also means that the internal Coulomb interaction commutes with external particle confinement for the calculation of the ground state. Consequently peculiar nonlinear quantum properties become observable (an experiment with GaAs quantum-dot helium is suggested).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2016-16220-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2016-07, Vol.131 (7), p.220, Article 220
issn 2190-5444
2190-5444
language eng
recordid cdi_hal_primary_oai_HAL_hal_03476263v1
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Eigenvectors
Fine structure
Ground state
Hamiltonian functions
Helium
Mathematical and Computational Physics
Molecular
Nonlinear Sciences
Nonlinearity
Optical and Plasma Physics
Orthogonality
Physics
Physics and Astronomy
Poisson equation
Quantum dots
Quantum electrodynamics
Quantum mechanics
Regular Article
Theoretical
title Role of nonlinearity in non-Hermitian quantum mechanics: Description of linear quantum electrodynamics from the nonlinear Schrödinger-Poisson equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20nonlinearity%20in%20non-Hermitian%20quantum%20mechanics:%20Description%20of%20linear%20quantum%20electrodynamics%20from%20the%20nonlinear%20Schr%C3%B6dinger-Poisson%20equation&rft.jtitle=European%20physical%20journal%20plus&rft.au=Reinisch,%20Gilbert%20C.&rft.date=2016-07-01&rft.volume=131&rft.issue=7&rft.spage=220&rft.pages=220-&rft.artnum=220&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2016-16220-6&rft_dat=%3Cproquest_hal_p%3E2919718837%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919718837&rft_id=info:pmid/&rfr_iscdi=true