Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity

• Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2021-04, Vol.230 (2), p.497-509
Hauptverfasser: López, Rosana, Cano, Francisco Javier, Martin-StPaul, Nicolas K., Cochard, Hervé, Choat, Brendan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 2
container_start_page 497
container_title The New phytologist
container_volume 230
creator López, Rosana
Cano, Francisco Javier
Martin-StPaul, Nicolas K.
Cochard, Hervé
Choat, Brendan
description • Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. • We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. • Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (g min) decreased. With trait variability, SurEau predicts the plasticity of LAI and g min buffers the impact of increasing aridity on population persistence. • Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.
doi_str_mv 10.1111/nph.17185
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03475380v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27013893</jstor_id><sourcerecordid>27013893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4115-b6f5d7d768f96778cd2f70b28c0fa567cdadea84f60a359764b36c249473d8663</originalsourceid><addsrcrecordid>eNp1kc1OGzEURi0EgpSy4AFaWWLVxYD_7VmiiDaVImDRSt1ZztgOjibjYDtEefsaBtJVvbiWrXOPrv0BcInRNa7rZtg8XWOJFT8CE8xE2yhM5TGYIERUI5j4cwY-5bxCCLVckFNwRinjRBE6AbtpjMmGwZQQBxg9zMWtoRks7J3xsCQTSobW-TA4aIP3LrmhVCqZ4pbBZVgiTG657esZ7mpJsI85vylK7F0yQ-dgrcuRNSnYUPafwYk3fXYX7_s5-P397td01swffvyc3s6bjmHMm4Xw3EorhfKtkFJ1lniJFkR1yBsuZGeNdUYxL5ChvJWCLajoCGuZpFYJQc_Bt9H7ZHq9SWFt0l5HE_Tsdq5f7xBlklOFXnBlr0Z2k-Lz1uWiV3GbhjqeJhxhJSVj9J-xS_WdyfmDFiP9Goeucei3OCr79d24XaydPZAf_1-BmxHYhd7t_2_S94-zD-WXsWOVS0yHDiIRpqql9C82y54i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501877443</pqid></control><display><type>article</type><title>Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>López, Rosana ; Cano, Francisco Javier ; Martin-StPaul, Nicolas K. ; Cochard, Hervé ; Choat, Brendan</creator><creatorcontrib>López, Rosana ; Cano, Francisco Javier ; Martin-StPaul, Nicolas K. ; Cochard, Hervé ; Choat, Brendan</creatorcontrib><description>• Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. • We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. • Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (g min) decreased. With trait variability, SurEau predicts the plasticity of LAI and g min buffers the impact of increasing aridity on population persistence. • Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17185</identifier><identifier>PMID: 33452823</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Aridity ; Australia ; Climate Change ; Climate models ; Conductance ; Drought ; Drought resistance ; Droughts ; Embolism ; embolism resistance ; Herbivores ; Homeostasis ; intraspecific variation ; Leaf area ; Leaf area index ; leaf economic spectrum plant hydraulics ; Leaves ; Life Sciences ; Plant Leaves ; Populations ; Resistance ; Species ; Stomata ; SurEau model ; Transplantation ; tree mortality ; Variability ; Water ; Water loss</subject><ispartof>The New phytologist, 2021-04, Vol.230 (2), p.497-509</ispartof><rights>2021 The Authors © 2021 New Phytologist Foundation</rights><rights>2021 The Authors. © 2021 New Phytologist Foundation</rights><rights>2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.</rights><rights>Copyright © 2021 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4115-b6f5d7d768f96778cd2f70b28c0fa567cdadea84f60a359764b36c249473d8663</citedby><cites>FETCH-LOGICAL-c4115-b6f5d7d768f96778cd2f70b28c0fa567cdadea84f60a359764b36c249473d8663</cites><orcidid>0000-0003-3553-9148 ; 0000-0001-5720-5865 ; 0000-0001-7574-0108 ; 0000-0002-2727-7072 ; 0000-0002-9105-640X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17185$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17185$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33452823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03475380$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>López, Rosana</creatorcontrib><creatorcontrib>Cano, Francisco Javier</creatorcontrib><creatorcontrib>Martin-StPaul, Nicolas K.</creatorcontrib><creatorcontrib>Cochard, Hervé</creatorcontrib><creatorcontrib>Choat, Brendan</creatorcontrib><title>Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. • We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. • Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (g min) decreased. With trait variability, SurEau predicts the plasticity of LAI and g min buffers the impact of increasing aridity on population persistence. • Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.</description><subject>Aridity</subject><subject>Australia</subject><subject>Climate Change</subject><subject>Climate models</subject><subject>Conductance</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Embolism</subject><subject>embolism resistance</subject><subject>Herbivores</subject><subject>Homeostasis</subject><subject>intraspecific variation</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>leaf economic spectrum plant hydraulics</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Plant Leaves</subject><subject>Populations</subject><subject>Resistance</subject><subject>Species</subject><subject>Stomata</subject><subject>SurEau model</subject><subject>Transplantation</subject><subject>tree mortality</subject><subject>Variability</subject><subject>Water</subject><subject>Water loss</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1OGzEURi0EgpSy4AFaWWLVxYD_7VmiiDaVImDRSt1ZztgOjibjYDtEefsaBtJVvbiWrXOPrv0BcInRNa7rZtg8XWOJFT8CE8xE2yhM5TGYIERUI5j4cwY-5bxCCLVckFNwRinjRBE6AbtpjMmGwZQQBxg9zMWtoRks7J3xsCQTSobW-TA4aIP3LrmhVCqZ4pbBZVgiTG657esZ7mpJsI85vylK7F0yQ-dgrcuRNSnYUPafwYk3fXYX7_s5-P397td01swffvyc3s6bjmHMm4Xw3EorhfKtkFJ1lniJFkR1yBsuZGeNdUYxL5ChvJWCLajoCGuZpFYJQc_Bt9H7ZHq9SWFt0l5HE_Tsdq5f7xBlklOFXnBlr0Z2k-Lz1uWiV3GbhjqeJhxhJSVj9J-xS_WdyfmDFiP9Goeucei3OCr79d24XaydPZAf_1-BmxHYhd7t_2_S94-zD-WXsWOVS0yHDiIRpqql9C82y54i</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>López, Rosana</creator><creator>Cano, Francisco Javier</creator><creator>Martin-StPaul, Nicolas K.</creator><creator>Cochard, Hervé</creator><creator>Choat, Brendan</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3553-9148</orcidid><orcidid>https://orcid.org/0000-0001-5720-5865</orcidid><orcidid>https://orcid.org/0000-0001-7574-0108</orcidid><orcidid>https://orcid.org/0000-0002-2727-7072</orcidid><orcidid>https://orcid.org/0000-0002-9105-640X</orcidid></search><sort><creationdate>20210401</creationdate><title>Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity</title><author>López, Rosana ; Cano, Francisco Javier ; Martin-StPaul, Nicolas K. ; Cochard, Hervé ; Choat, Brendan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4115-b6f5d7d768f96778cd2f70b28c0fa567cdadea84f60a359764b36c249473d8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aridity</topic><topic>Australia</topic><topic>Climate Change</topic><topic>Climate models</topic><topic>Conductance</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Embolism</topic><topic>embolism resistance</topic><topic>Herbivores</topic><topic>Homeostasis</topic><topic>intraspecific variation</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>leaf economic spectrum plant hydraulics</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Plant Leaves</topic><topic>Populations</topic><topic>Resistance</topic><topic>Species</topic><topic>Stomata</topic><topic>SurEau model</topic><topic>Transplantation</topic><topic>tree mortality</topic><topic>Variability</topic><topic>Water</topic><topic>Water loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López, Rosana</creatorcontrib><creatorcontrib>Cano, Francisco Javier</creatorcontrib><creatorcontrib>Martin-StPaul, Nicolas K.</creatorcontrib><creatorcontrib>Cochard, Hervé</creatorcontrib><creatorcontrib>Choat, Brendan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López, Rosana</au><au>Cano, Francisco Javier</au><au>Martin-StPaul, Nicolas K.</au><au>Cochard, Hervé</au><au>Choat, Brendan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>230</volume><issue>2</issue><spage>497</spage><epage>509</epage><pages>497-509</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. • We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. • Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (g min) decreased. With trait variability, SurEau predicts the plasticity of LAI and g min buffers the impact of increasing aridity on population persistence. • Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.</abstract><cop>England</cop><pub>Wiley</pub><pmid>33452823</pmid><doi>10.1111/nph.17185</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3553-9148</orcidid><orcidid>https://orcid.org/0000-0001-5720-5865</orcidid><orcidid>https://orcid.org/0000-0001-7574-0108</orcidid><orcidid>https://orcid.org/0000-0002-2727-7072</orcidid><orcidid>https://orcid.org/0000-0002-9105-640X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2021-04, Vol.230 (2), p.497-509
issn 0028-646X
1469-8137
language eng
recordid cdi_hal_primary_oai_HAL_hal_03475380v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Aridity
Australia
Climate Change
Climate models
Conductance
Drought
Drought resistance
Droughts
Embolism
embolism resistance
Herbivores
Homeostasis
intraspecific variation
Leaf area
Leaf area index
leaf economic spectrum plant hydraulics
Leaves
Life Sciences
Plant Leaves
Populations
Resistance
Species
Stomata
SurEau model
Transplantation
tree mortality
Variability
Water
Water loss
title Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20of%20stem%20and%20leaf%20traits%20define%20different%20strategies%20to%20regulate%20water%20loss%20and%20tolerance%20ranges%20to%20aridity&rft.jtitle=The%20New%20phytologist&rft.au=L%C3%B3pez,%20Rosana&rft.date=2021-04-01&rft.volume=230&rft.issue=2&rft.spage=497&rft.epage=509&rft.pages=497-509&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17185&rft_dat=%3Cjstor_hal_p%3E27013893%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501877443&rft_id=info:pmid/33452823&rft_jstor_id=27013893&rfr_iscdi=true