Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity
• Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate c...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2021-04, Vol.230 (2), p.497-509 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 509 |
---|---|
container_issue | 2 |
container_start_page | 497 |
container_title | The New phytologist |
container_volume | 230 |
creator | López, Rosana Cano, Francisco Javier Martin-StPaul, Nicolas K. Cochard, Hervé Choat, Brendan |
description | • Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change.
• We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance.
• Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (g
min) decreased. With trait variability, SurEau predicts the plasticity of LAI and g
min buffers the impact of increasing aridity on population persistence.
• Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits. |
doi_str_mv | 10.1111/nph.17185 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03475380v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27013893</jstor_id><sourcerecordid>27013893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4115-b6f5d7d768f96778cd2f70b28c0fa567cdadea84f60a359764b36c249473d8663</originalsourceid><addsrcrecordid>eNp1kc1OGzEURi0EgpSy4AFaWWLVxYD_7VmiiDaVImDRSt1ZztgOjibjYDtEefsaBtJVvbiWrXOPrv0BcInRNa7rZtg8XWOJFT8CE8xE2yhM5TGYIERUI5j4cwY-5bxCCLVckFNwRinjRBE6AbtpjMmGwZQQBxg9zMWtoRks7J3xsCQTSobW-TA4aIP3LrmhVCqZ4pbBZVgiTG657esZ7mpJsI85vylK7F0yQ-dgrcuRNSnYUPafwYk3fXYX7_s5-P397td01swffvyc3s6bjmHMm4Xw3EorhfKtkFJ1lniJFkR1yBsuZGeNdUYxL5ChvJWCLajoCGuZpFYJQc_Bt9H7ZHq9SWFt0l5HE_Tsdq5f7xBlklOFXnBlr0Z2k-Lz1uWiV3GbhjqeJhxhJSVj9J-xS_WdyfmDFiP9Goeucei3OCr79d24XaydPZAf_1-BmxHYhd7t_2_S94-zD-WXsWOVS0yHDiIRpqql9C82y54i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501877443</pqid></control><display><type>article</type><title>Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>López, Rosana ; Cano, Francisco Javier ; Martin-StPaul, Nicolas K. ; Cochard, Hervé ; Choat, Brendan</creator><creatorcontrib>López, Rosana ; Cano, Francisco Javier ; Martin-StPaul, Nicolas K. ; Cochard, Hervé ; Choat, Brendan</creatorcontrib><description>• Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change.
• We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance.
• Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (g
min) decreased. With trait variability, SurEau predicts the plasticity of LAI and g
min buffers the impact of increasing aridity on population persistence.
• Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17185</identifier><identifier>PMID: 33452823</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Aridity ; Australia ; Climate Change ; Climate models ; Conductance ; Drought ; Drought resistance ; Droughts ; Embolism ; embolism resistance ; Herbivores ; Homeostasis ; intraspecific variation ; Leaf area ; Leaf area index ; leaf economic spectrum plant hydraulics ; Leaves ; Life Sciences ; Plant Leaves ; Populations ; Resistance ; Species ; Stomata ; SurEau model ; Transplantation ; tree mortality ; Variability ; Water ; Water loss</subject><ispartof>The New phytologist, 2021-04, Vol.230 (2), p.497-509</ispartof><rights>2021 The Authors © 2021 New Phytologist Foundation</rights><rights>2021 The Authors. © 2021 New Phytologist Foundation</rights><rights>2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.</rights><rights>Copyright © 2021 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4115-b6f5d7d768f96778cd2f70b28c0fa567cdadea84f60a359764b36c249473d8663</citedby><cites>FETCH-LOGICAL-c4115-b6f5d7d768f96778cd2f70b28c0fa567cdadea84f60a359764b36c249473d8663</cites><orcidid>0000-0003-3553-9148 ; 0000-0001-5720-5865 ; 0000-0001-7574-0108 ; 0000-0002-2727-7072 ; 0000-0002-9105-640X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17185$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17185$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33452823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03475380$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>López, Rosana</creatorcontrib><creatorcontrib>Cano, Francisco Javier</creatorcontrib><creatorcontrib>Martin-StPaul, Nicolas K.</creatorcontrib><creatorcontrib>Cochard, Hervé</creatorcontrib><creatorcontrib>Choat, Brendan</creatorcontrib><title>Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change.
• We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance.
• Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (g
min) decreased. With trait variability, SurEau predicts the plasticity of LAI and g
min buffers the impact of increasing aridity on population persistence.
• Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.</description><subject>Aridity</subject><subject>Australia</subject><subject>Climate Change</subject><subject>Climate models</subject><subject>Conductance</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Embolism</subject><subject>embolism resistance</subject><subject>Herbivores</subject><subject>Homeostasis</subject><subject>intraspecific variation</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>leaf economic spectrum plant hydraulics</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Plant Leaves</subject><subject>Populations</subject><subject>Resistance</subject><subject>Species</subject><subject>Stomata</subject><subject>SurEau model</subject><subject>Transplantation</subject><subject>tree mortality</subject><subject>Variability</subject><subject>Water</subject><subject>Water loss</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1OGzEURi0EgpSy4AFaWWLVxYD_7VmiiDaVImDRSt1ZztgOjibjYDtEefsaBtJVvbiWrXOPrv0BcInRNa7rZtg8XWOJFT8CE8xE2yhM5TGYIERUI5j4cwY-5bxCCLVckFNwRinjRBE6AbtpjMmGwZQQBxg9zMWtoRks7J3xsCQTSobW-TA4aIP3LrmhVCqZ4pbBZVgiTG657esZ7mpJsI85vylK7F0yQ-dgrcuRNSnYUPafwYk3fXYX7_s5-P397td01swffvyc3s6bjmHMm4Xw3EorhfKtkFJ1lniJFkR1yBsuZGeNdUYxL5ChvJWCLajoCGuZpFYJQc_Bt9H7ZHq9SWFt0l5HE_Tsdq5f7xBlklOFXnBlr0Z2k-Lz1uWiV3GbhjqeJhxhJSVj9J-xS_WdyfmDFiP9Goeucei3OCr79d24XaydPZAf_1-BmxHYhd7t_2_S94-zD-WXsWOVS0yHDiIRpqql9C82y54i</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>López, Rosana</creator><creator>Cano, Francisco Javier</creator><creator>Martin-StPaul, Nicolas K.</creator><creator>Cochard, Hervé</creator><creator>Choat, Brendan</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3553-9148</orcidid><orcidid>https://orcid.org/0000-0001-5720-5865</orcidid><orcidid>https://orcid.org/0000-0001-7574-0108</orcidid><orcidid>https://orcid.org/0000-0002-2727-7072</orcidid><orcidid>https://orcid.org/0000-0002-9105-640X</orcidid></search><sort><creationdate>20210401</creationdate><title>Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity</title><author>López, Rosana ; Cano, Francisco Javier ; Martin-StPaul, Nicolas K. ; Cochard, Hervé ; Choat, Brendan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4115-b6f5d7d768f96778cd2f70b28c0fa567cdadea84f60a359764b36c249473d8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aridity</topic><topic>Australia</topic><topic>Climate Change</topic><topic>Climate models</topic><topic>Conductance</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Embolism</topic><topic>embolism resistance</topic><topic>Herbivores</topic><topic>Homeostasis</topic><topic>intraspecific variation</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>leaf economic spectrum plant hydraulics</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Plant Leaves</topic><topic>Populations</topic><topic>Resistance</topic><topic>Species</topic><topic>Stomata</topic><topic>SurEau model</topic><topic>Transplantation</topic><topic>tree mortality</topic><topic>Variability</topic><topic>Water</topic><topic>Water loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López, Rosana</creatorcontrib><creatorcontrib>Cano, Francisco Javier</creatorcontrib><creatorcontrib>Martin-StPaul, Nicolas K.</creatorcontrib><creatorcontrib>Cochard, Hervé</creatorcontrib><creatorcontrib>Choat, Brendan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López, Rosana</au><au>Cano, Francisco Javier</au><au>Martin-StPaul, Nicolas K.</au><au>Cochard, Hervé</au><au>Choat, Brendan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>230</volume><issue>2</issue><spage>497</spage><epage>509</epage><pages>497-509</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change.
• We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance.
• Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (g
min) decreased. With trait variability, SurEau predicts the plasticity of LAI and g
min buffers the impact of increasing aridity on population persistence.
• Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.</abstract><cop>England</cop><pub>Wiley</pub><pmid>33452823</pmid><doi>10.1111/nph.17185</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3553-9148</orcidid><orcidid>https://orcid.org/0000-0001-5720-5865</orcidid><orcidid>https://orcid.org/0000-0001-7574-0108</orcidid><orcidid>https://orcid.org/0000-0002-2727-7072</orcidid><orcidid>https://orcid.org/0000-0002-9105-640X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2021-04, Vol.230 (2), p.497-509 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03475380v1 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals |
subjects | Aridity Australia Climate Change Climate models Conductance Drought Drought resistance Droughts Embolism embolism resistance Herbivores Homeostasis intraspecific variation Leaf area Leaf area index leaf economic spectrum plant hydraulics Leaves Life Sciences Plant Leaves Populations Resistance Species Stomata SurEau model Transplantation tree mortality Variability Water Water loss |
title | Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20of%20stem%20and%20leaf%20traits%20define%20different%20strategies%20to%20regulate%20water%20loss%20and%20tolerance%20ranges%20to%20aridity&rft.jtitle=The%20New%20phytologist&rft.au=L%C3%B3pez,%20Rosana&rft.date=2021-04-01&rft.volume=230&rft.issue=2&rft.spage=497&rft.epage=509&rft.pages=497-509&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17185&rft_dat=%3Cjstor_hal_p%3E27013893%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501877443&rft_id=info:pmid/33452823&rft_jstor_id=27013893&rfr_iscdi=true |