Study on Langevin model parameters of velocity in turbulent shear flows

This paper deals with the stochastic equation used to predict the fluctuating velocity of a fluid particle in a nonhomogeneous turbulent flow, in the frame of probability density function (PDF) approaches. It is shown that a Langevin-type equation is appropriate provided its parameters (drift and di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2010-11, Vol.22 (11), p.115101-115101-11
Hauptverfasser: Tanière, Anne, Arcen, Boris, Oesterlé, Benoît, Pozorski, Jacek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115101-11
container_issue 11
container_start_page 115101
container_title Physics of fluids (1994)
container_volume 22
creator Tanière, Anne
Arcen, Boris
Oesterlé, Benoît
Pozorski, Jacek
description This paper deals with the stochastic equation used to predict the fluctuating velocity of a fluid particle in a nonhomogeneous turbulent flow, in the frame of probability density function (PDF) approaches. It is shown that a Langevin-type equation is appropriate provided its parameters (drift and diffusion matrices) are suitably specified. By following the approach proposed in the literature for homogeneous turbulent shear flows, these parameters have been identified using data from direct numerical simulations (DNS) of both channel and pipe flows. Using statistics extracted from the computation of the channel flow, it is shown that the drift matrix of the stochastic differential equation can reasonably be assumed to be diagonal but not spherical. This behavior of the drift coefficients is confirmed by the available results for a turbulent pipe flow at low Reynolds number. Concerning the diffusion matrix, it is found that this matrix is anisotropic for low Reynolds number flows, a property which has been observed earlier for a homogeneous turbulent shear flow. The pertinence of the present estimation of the drift and diffusion tensors is assessed through different kinds of tests including the incorporation of these parameters in a purely Lagrangian, or stand-alone, PDF computation.
doi_str_mv 10.1063/1.3489123
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03474404v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03474404v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-1e4f99a102eae1f3e6da802705e98dd406e24f73a4d934cc2114bd05516de8c63</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AZeGBhS7Nh14gWpqqBFisQAzNbVPtOgNK7stKhvT0qhTEx3uvv-0-kj5JqzEWdK3PGRkKXmuTghA85KnRVKqdN9X7BMKcHPyUVKH4wxoXM1ILOXbuN2NLS0gvYdt3VLV8FhQ9cQYYUdxkSDp1tsgq27He333SYuNg22HU1LhEh9Ez7TJTnz0CS8-qlD8vb48DqdZ9Xz7Gk6qTLb_9VlHKXXGjjLEZB7gcpByfKCjVGXzkmmMJe-ECCdFtLanHO5cGw85sphaZUYktvD3SU0Zh3rFcSdCVCb-aQy-xkTspCSyS3_Y20MKUX0xwBnZm_LcPNjq2dvDuwakoXGR2htnY6BXChdqlL33P2BS70O6OrQ_n_0W63piV-1ZhXEF9T1feM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Study on Langevin model parameters of velocity in turbulent shear flows</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Tanière, Anne ; Arcen, Boris ; Oesterlé, Benoît ; Pozorski, Jacek</creator><creatorcontrib>Tanière, Anne ; Arcen, Boris ; Oesterlé, Benoît ; Pozorski, Jacek</creatorcontrib><description>This paper deals with the stochastic equation used to predict the fluctuating velocity of a fluid particle in a nonhomogeneous turbulent flow, in the frame of probability density function (PDF) approaches. It is shown that a Langevin-type equation is appropriate provided its parameters (drift and diffusion matrices) are suitably specified. By following the approach proposed in the literature for homogeneous turbulent shear flows, these parameters have been identified using data from direct numerical simulations (DNS) of both channel and pipe flows. Using statistics extracted from the computation of the channel flow, it is shown that the drift matrix of the stochastic differential equation can reasonably be assumed to be diagonal but not spherical. This behavior of the drift coefficients is confirmed by the available results for a turbulent pipe flow at low Reynolds number. Concerning the diffusion matrix, it is found that this matrix is anisotropic for low Reynolds number flows, a property which has been observed earlier for a homogeneous turbulent shear flow. The pertinence of the present estimation of the drift and diffusion tensors is assessed through different kinds of tests including the incorporation of these parameters in a purely Lagrangian, or stand-alone, PDF computation.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3489123</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Mechanics ; Physics ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2010-11, Vol.22 (11), p.115101-115101-11</ispartof><rights>2010 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-1e4f99a102eae1f3e6da802705e98dd406e24f73a4d934cc2114bd05516de8c63</citedby><cites>FETCH-LOGICAL-c348t-1e4f99a102eae1f3e6da802705e98dd406e24f73a4d934cc2114bd05516de8c63</cites><orcidid>0000-0001-7057-9802 ; 0000-0002-4301-4096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23698689$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03474404$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanière, Anne</creatorcontrib><creatorcontrib>Arcen, Boris</creatorcontrib><creatorcontrib>Oesterlé, Benoît</creatorcontrib><creatorcontrib>Pozorski, Jacek</creatorcontrib><title>Study on Langevin model parameters of velocity in turbulent shear flows</title><title>Physics of fluids (1994)</title><description>This paper deals with the stochastic equation used to predict the fluctuating velocity of a fluid particle in a nonhomogeneous turbulent flow, in the frame of probability density function (PDF) approaches. It is shown that a Langevin-type equation is appropriate provided its parameters (drift and diffusion matrices) are suitably specified. By following the approach proposed in the literature for homogeneous turbulent shear flows, these parameters have been identified using data from direct numerical simulations (DNS) of both channel and pipe flows. Using statistics extracted from the computation of the channel flow, it is shown that the drift matrix of the stochastic differential equation can reasonably be assumed to be diagonal but not spherical. This behavior of the drift coefficients is confirmed by the available results for a turbulent pipe flow at low Reynolds number. Concerning the diffusion matrix, it is found that this matrix is anisotropic for low Reynolds number flows, a property which has been observed earlier for a homogeneous turbulent shear flow. The pertinence of the present estimation of the drift and diffusion tensors is assessed through different kinds of tests including the incorporation of these parameters in a purely Lagrangian, or stand-alone, PDF computation.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AZeGBhS7Nh14gWpqqBFisQAzNbVPtOgNK7stKhvT0qhTEx3uvv-0-kj5JqzEWdK3PGRkKXmuTghA85KnRVKqdN9X7BMKcHPyUVKH4wxoXM1ILOXbuN2NLS0gvYdt3VLV8FhQ9cQYYUdxkSDp1tsgq27He333SYuNg22HU1LhEh9Ez7TJTnz0CS8-qlD8vb48DqdZ9Xz7Gk6qTLb_9VlHKXXGjjLEZB7gcpByfKCjVGXzkmmMJe-ECCdFtLanHO5cGw85sphaZUYktvD3SU0Zh3rFcSdCVCb-aQy-xkTspCSyS3_Y20MKUX0xwBnZm_LcPNjq2dvDuwakoXGR2htnY6BXChdqlL33P2BS70O6OrQ_n_0W63piV-1ZhXEF9T1feM</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Tanière, Anne</creator><creator>Arcen, Boris</creator><creator>Oesterlé, Benoît</creator><creator>Pozorski, Jacek</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7057-9802</orcidid><orcidid>https://orcid.org/0000-0002-4301-4096</orcidid></search><sort><creationdate>20101101</creationdate><title>Study on Langevin model parameters of velocity in turbulent shear flows</title><author>Tanière, Anne ; Arcen, Boris ; Oesterlé, Benoît ; Pozorski, Jacek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-1e4f99a102eae1f3e6da802705e98dd406e24f73a4d934cc2114bd05516de8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanière, Anne</creatorcontrib><creatorcontrib>Arcen, Boris</creatorcontrib><creatorcontrib>Oesterlé, Benoît</creatorcontrib><creatorcontrib>Pozorski, Jacek</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanière, Anne</au><au>Arcen, Boris</au><au>Oesterlé, Benoît</au><au>Pozorski, Jacek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Langevin model parameters of velocity in turbulent shear flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>22</volume><issue>11</issue><spage>115101</spage><epage>115101-11</epage><pages>115101-115101-11</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This paper deals with the stochastic equation used to predict the fluctuating velocity of a fluid particle in a nonhomogeneous turbulent flow, in the frame of probability density function (PDF) approaches. It is shown that a Langevin-type equation is appropriate provided its parameters (drift and diffusion matrices) are suitably specified. By following the approach proposed in the literature for homogeneous turbulent shear flows, these parameters have been identified using data from direct numerical simulations (DNS) of both channel and pipe flows. Using statistics extracted from the computation of the channel flow, it is shown that the drift matrix of the stochastic differential equation can reasonably be assumed to be diagonal but not spherical. This behavior of the drift coefficients is confirmed by the available results for a turbulent pipe flow at low Reynolds number. Concerning the diffusion matrix, it is found that this matrix is anisotropic for low Reynolds number flows, a property which has been observed earlier for a homogeneous turbulent shear flow. The pertinence of the present estimation of the drift and diffusion tensors is assessed through different kinds of tests including the incorporation of these parameters in a purely Lagrangian, or stand-alone, PDF computation.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3489123</doi><orcidid>https://orcid.org/0000-0001-7057-9802</orcidid><orcidid>https://orcid.org/0000-0002-4301-4096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2010-11, Vol.22 (11), p.115101-115101-11
issn 1070-6631
1089-7666
language eng
recordid cdi_hal_primary_oai_HAL_hal_03474404v1
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Exact sciences and technology
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Mechanics
Physics
Turbulence simulation and modeling
Turbulent flows, convection, and heat transfer
title Study on Langevin model parameters of velocity in turbulent shear flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Langevin%20model%20parameters%20of%20velocity%20in%20turbulent%20shear%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Tani%C3%A8re,%20Anne&rft.date=2010-11-01&rft.volume=22&rft.issue=11&rft.spage=115101&rft.epage=115101-11&rft.pages=115101-115101-11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3489123&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03474404v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true