The architecture of human general transcription factor TFIID core complex
The structures of three distinct human transcription factor IID (TFIID) protein assemblies are solved using cryo-electron microscopy; by incorporating TAF8 and TAF10, the key structural changes that remodel TFIID during assembly are determined, particularly the transition from a symmetric core-TFIID...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2013-01, Vol.493 (7434), p.699-702 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 702 |
---|---|
container_issue | 7434 |
container_start_page | 699 |
container_title | Nature (London) |
container_volume | 493 |
creator | Bieniossek, Christoph Papai, Gabor Schaffitzel, Christiane Garzoni, Frederic Chaillet, Maxime Scheer, Elisabeth Papadopoulos, Petros Tora, Laszlo Schultz, Patrick Berger, Imre |
description | The structures of three distinct human transcription factor IID (TFIID) protein assemblies are solved using cryo-electron microscopy; by incorporating TAF8 and TAF10, the key structural changes that remodel TFIID during assembly are determined, particularly the transition from a symmetric core-TFIID to an asymmetric holo-complex.
TFIID transcription factor core structure
TFIID is the first general transcription factor to bind gene promoters prior to gene transcription by RNA polymerase II, triggering pre-initiation complex formation and functioning as a coactivator. TFIID is a large multiprotein complex composed of TATA-box-binding protein (TBP) and TBP-associated factors (TAFs). Imre Berger and colleagues now determine structures of three distinct human TFIID protein assemblies using cryo-electron microscopy. In their model for step-wise assembly of the complex, the transition from a symmetric core TFIID to an asymmetric holo-complex occurs upon binding of TAF8 and TAF10, which induces major conformational changes.
The initiation of gene transcription by RNA polymerase II is regulated by a plethora of proteins in human cells. The first general transcription factor to bind gene promoters is transcription factor IID (TFIID). TFIID triggers pre-initiation complex formation, functions as a coactivator by interacting with transcriptional activators and reads epigenetic marks
1
,
2
,
3
. TFIID is a megadalton-sized multiprotein complex composed of TATA-box-binding protein (TBP) and 13 TBP-associated factors (TAFs)
3
. Despite its crucial role, the detailed architecture and assembly mechanism of TFIID remain elusive. Histone fold domains are prevalent in TAFs, and histone-like tetramer and octamer structures have been proposed in TFIID
4
,
5
,
6
. A functional core-TFIID subcomplex was revealed in
Drosophila
nuclei, consisting of a subset of TAFs (TAF4, TAF5, TAF6, TAF9 and TAF12)
7
. These core subunits are thought to be present in two copies in holo-TFIID, in contrast to TBP and other TAFs that are present in a single copy
8
, conveying a transition from symmetry to asymmetry in the TFIID assembly pathway. Here we present the structure of human core-TFIID determined by cryo-electron microscopy at 11.6 Å resolution. Our structure reveals a two-fold symmetric, interlaced architecture, with pronounced protrusions, that accommodates all conserved structural features of the TAFs including the histone folds. We further demonstrate that binding of one TAF8–TAF10 comp |
doi_str_mv | 10.1038/nature11791 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03464614v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A318105074</galeid><sourcerecordid>A318105074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c781t-8c9498758dd475df55814096922ecf5d8fb34f6cf710e19af24a2b28c22d52303</originalsourceid><addsrcrecordid>eNqF009v0zAYBvAIgVgZnLijiF2YIMOv7djOsSqMVapAgiKOluvYbaYkzuwEjW-Pq5bRoozJB0v2z4_lP2-SvAR0AYiI963qB28AeAGPkglQzjLKBH-cTBDCIkOCsJPkWQjXCKEcOH2anGCCC5wDniTz5cakyutN1Ru9zUmdTTdDo9p0bVrjVZ32XrVB-6rrK9emVune-XR5OZ9_SLWLC7RrutrcPk-eWFUH82LfnybfLz8uZ1fZ4sun-Wy6yDQX0GdCF7QQPBdlSXle2jwXQFHBCoyNtnkp7IpQy7TlgAwUymKq8AoLjXGZY4LIaXK-y92oWna-apT_JZ2q5NV0IbdjiFBGGdCfEO2bne28uxlM6GVTBW3qWrXGDUECFoQT4ExEevYPvXaDb-NJJBDIRcEYh79qrWojq9a6eDt6GyqnDAOgQlD0X0VAAMoRp1FlI2p_6641torDR_71iNdddSMPt74XHSZdjKDYStNUenTr86MF0fTmtl-rIQQ5__b1-PAP2cPct_fb6fLH7PNx8sN6JFt7F4I39u6zAJLbwpEHhRP1q_3zD6vGlHf2T6VE8G4HQpxq18Yf_I-RvN9PJhbZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315896671</pqid></control><display><type>article</type><title>The architecture of human general transcription factor TFIID core complex</title><source>MEDLINE</source><source>Nature Publishing Group</source><source>Springer Nature - Complete Springer Journals</source><creator>Bieniossek, Christoph ; Papai, Gabor ; Schaffitzel, Christiane ; Garzoni, Frederic ; Chaillet, Maxime ; Scheer, Elisabeth ; Papadopoulos, Petros ; Tora, Laszlo ; Schultz, Patrick ; Berger, Imre</creator><creatorcontrib>Bieniossek, Christoph ; Papai, Gabor ; Schaffitzel, Christiane ; Garzoni, Frederic ; Chaillet, Maxime ; Scheer, Elisabeth ; Papadopoulos, Petros ; Tora, Laszlo ; Schultz, Patrick ; Berger, Imre</creatorcontrib><description>The structures of three distinct human transcription factor IID (TFIID) protein assemblies are solved using cryo-electron microscopy; by incorporating TAF8 and TAF10, the key structural changes that remodel TFIID during assembly are determined, particularly the transition from a symmetric core-TFIID to an asymmetric holo-complex.
TFIID transcription factor core structure
TFIID is the first general transcription factor to bind gene promoters prior to gene transcription by RNA polymerase II, triggering pre-initiation complex formation and functioning as a coactivator. TFIID is a large multiprotein complex composed of TATA-box-binding protein (TBP) and TBP-associated factors (TAFs). Imre Berger and colleagues now determine structures of three distinct human TFIID protein assemblies using cryo-electron microscopy. In their model for step-wise assembly of the complex, the transition from a symmetric core TFIID to an asymmetric holo-complex occurs upon binding of TAF8 and TAF10, which induces major conformational changes.
The initiation of gene transcription by RNA polymerase II is regulated by a plethora of proteins in human cells. The first general transcription factor to bind gene promoters is transcription factor IID (TFIID). TFIID triggers pre-initiation complex formation, functions as a coactivator by interacting with transcriptional activators and reads epigenetic marks
1
,
2
,
3
. TFIID is a megadalton-sized multiprotein complex composed of TATA-box-binding protein (TBP) and 13 TBP-associated factors (TAFs)
3
. Despite its crucial role, the detailed architecture and assembly mechanism of TFIID remain elusive. Histone fold domains are prevalent in TAFs, and histone-like tetramer and octamer structures have been proposed in TFIID
4
,
5
,
6
. A functional core-TFIID subcomplex was revealed in
Drosophila
nuclei, consisting of a subset of TAFs (TAF4, TAF5, TAF6, TAF9 and TAF12)
7
. These core subunits are thought to be present in two copies in holo-TFIID, in contrast to TBP and other TAFs that are present in a single copy
8
, conveying a transition from symmetry to asymmetry in the TFIID assembly pathway. Here we present the structure of human core-TFIID determined by cryo-electron microscopy at 11.6 Å resolution. Our structure reveals a two-fold symmetric, interlaced architecture, with pronounced protrusions, that accommodates all conserved structural features of the TAFs including the histone folds. We further demonstrate that binding of one TAF8–TAF10 complex breaks the original symmetry of core-TFIID. We propose that the resulting asymmetric structure serves as a functional scaffold to nucleate holo-TFIID assembly, by accreting one copy each of the remaining TAFs and TBP.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature11791</identifier><identifier>PMID: 23292512</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2230/2233 ; 631/337/572/2102 ; 631/45/612/822 ; 631/535/1258/1259 ; Architecture ; Asymmetry ; Biochemistry, Molecular Biology ; Biological research ; Cells, Cultured ; Cryoelectron Microscopy ; Crystal structure ; HeLa Cells ; Human genetics ; Humanities and Social Sciences ; Humans ; Insects ; letter ; Life Sciences ; Microscopy ; Models, Molecular ; multidisciplinary ; Observations ; Protein Binding ; Protein Structure, Tertiary ; RNA polymerase ; Science ; Software packages ; Structure ; Symmetry ; Transcription Factor TFIID - chemistry ; Transcription Factor TFIID - genetics ; Transcription Factor TFIID - metabolism ; Transcription factors</subject><ispartof>Nature (London), 2013-01, Vol.493 (7434), p.699-702</ispartof><rights>Springer Nature Limited 2012</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 31, 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c781t-8c9498758dd475df55814096922ecf5d8fb34f6cf710e19af24a2b28c22d52303</citedby><cites>FETCH-LOGICAL-c781t-8c9498758dd475df55814096922ecf5d8fb34f6cf710e19af24a2b28c22d52303</cites><orcidid>0000-0001-7398-2250 ; 0000-0002-2779-8679 ; 0000-0001-7518-9045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature11791$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature11791$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23292512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03464614$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bieniossek, Christoph</creatorcontrib><creatorcontrib>Papai, Gabor</creatorcontrib><creatorcontrib>Schaffitzel, Christiane</creatorcontrib><creatorcontrib>Garzoni, Frederic</creatorcontrib><creatorcontrib>Chaillet, Maxime</creatorcontrib><creatorcontrib>Scheer, Elisabeth</creatorcontrib><creatorcontrib>Papadopoulos, Petros</creatorcontrib><creatorcontrib>Tora, Laszlo</creatorcontrib><creatorcontrib>Schultz, Patrick</creatorcontrib><creatorcontrib>Berger, Imre</creatorcontrib><title>The architecture of human general transcription factor TFIID core complex</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The structures of three distinct human transcription factor IID (TFIID) protein assemblies are solved using cryo-electron microscopy; by incorporating TAF8 and TAF10, the key structural changes that remodel TFIID during assembly are determined, particularly the transition from a symmetric core-TFIID to an asymmetric holo-complex.
TFIID transcription factor core structure
TFIID is the first general transcription factor to bind gene promoters prior to gene transcription by RNA polymerase II, triggering pre-initiation complex formation and functioning as a coactivator. TFIID is a large multiprotein complex composed of TATA-box-binding protein (TBP) and TBP-associated factors (TAFs). Imre Berger and colleagues now determine structures of three distinct human TFIID protein assemblies using cryo-electron microscopy. In their model for step-wise assembly of the complex, the transition from a symmetric core TFIID to an asymmetric holo-complex occurs upon binding of TAF8 and TAF10, which induces major conformational changes.
The initiation of gene transcription by RNA polymerase II is regulated by a plethora of proteins in human cells. The first general transcription factor to bind gene promoters is transcription factor IID (TFIID). TFIID triggers pre-initiation complex formation, functions as a coactivator by interacting with transcriptional activators and reads epigenetic marks
1
,
2
,
3
. TFIID is a megadalton-sized multiprotein complex composed of TATA-box-binding protein (TBP) and 13 TBP-associated factors (TAFs)
3
. Despite its crucial role, the detailed architecture and assembly mechanism of TFIID remain elusive. Histone fold domains are prevalent in TAFs, and histone-like tetramer and octamer structures have been proposed in TFIID
4
,
5
,
6
. A functional core-TFIID subcomplex was revealed in
Drosophila
nuclei, consisting of a subset of TAFs (TAF4, TAF5, TAF6, TAF9 and TAF12)
7
. These core subunits are thought to be present in two copies in holo-TFIID, in contrast to TBP and other TAFs that are present in a single copy
8
, conveying a transition from symmetry to asymmetry in the TFIID assembly pathway. Here we present the structure of human core-TFIID determined by cryo-electron microscopy at 11.6 Å resolution. Our structure reveals a two-fold symmetric, interlaced architecture, with pronounced protrusions, that accommodates all conserved structural features of the TAFs including the histone folds. We further demonstrate that binding of one TAF8–TAF10 complex breaks the original symmetry of core-TFIID. We propose that the resulting asymmetric structure serves as a functional scaffold to nucleate holo-TFIID assembly, by accreting one copy each of the remaining TAFs and TBP.</description><subject>631/1647/2230/2233</subject><subject>631/337/572/2102</subject><subject>631/45/612/822</subject><subject>631/535/1258/1259</subject><subject>Architecture</subject><subject>Asymmetry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological research</subject><subject>Cells, Cultured</subject><subject>Cryoelectron Microscopy</subject><subject>Crystal structure</subject><subject>HeLa Cells</subject><subject>Human genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Insects</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Observations</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>RNA polymerase</subject><subject>Science</subject><subject>Software packages</subject><subject>Structure</subject><subject>Symmetry</subject><subject>Transcription Factor TFIID - chemistry</subject><subject>Transcription Factor TFIID - genetics</subject><subject>Transcription Factor TFIID - metabolism</subject><subject>Transcription factors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF009v0zAYBvAIgVgZnLijiF2YIMOv7djOsSqMVapAgiKOluvYbaYkzuwEjW-Pq5bRoozJB0v2z4_lP2-SvAR0AYiI963qB28AeAGPkglQzjLKBH-cTBDCIkOCsJPkWQjXCKEcOH2anGCCC5wDniTz5cakyutN1Ru9zUmdTTdDo9p0bVrjVZ32XrVB-6rrK9emVune-XR5OZ9_SLWLC7RrutrcPk-eWFUH82LfnybfLz8uZ1fZ4sun-Wy6yDQX0GdCF7QQPBdlSXle2jwXQFHBCoyNtnkp7IpQy7TlgAwUymKq8AoLjXGZY4LIaXK-y92oWna-apT_JZ2q5NV0IbdjiFBGGdCfEO2bne28uxlM6GVTBW3qWrXGDUECFoQT4ExEevYPvXaDb-NJJBDIRcEYh79qrWojq9a6eDt6GyqnDAOgQlD0X0VAAMoRp1FlI2p_6641torDR_71iNdddSMPt74XHSZdjKDYStNUenTr86MF0fTmtl-rIQQ5__b1-PAP2cPct_fb6fLH7PNx8sN6JFt7F4I39u6zAJLbwpEHhRP1q_3zD6vGlHf2T6VE8G4HQpxq18Yf_I-RvN9PJhbZ</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>Bieniossek, Christoph</creator><creator>Papai, Gabor</creator><creator>Schaffitzel, Christiane</creator><creator>Garzoni, Frederic</creator><creator>Chaillet, Maxime</creator><creator>Scheer, Elisabeth</creator><creator>Papadopoulos, Petros</creator><creator>Tora, Laszlo</creator><creator>Schultz, Patrick</creator><creator>Berger, Imre</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7398-2250</orcidid><orcidid>https://orcid.org/0000-0002-2779-8679</orcidid><orcidid>https://orcid.org/0000-0001-7518-9045</orcidid></search><sort><creationdate>20130131</creationdate><title>The architecture of human general transcription factor TFIID core complex</title><author>Bieniossek, Christoph ; Papai, Gabor ; Schaffitzel, Christiane ; Garzoni, Frederic ; Chaillet, Maxime ; Scheer, Elisabeth ; Papadopoulos, Petros ; Tora, Laszlo ; Schultz, Patrick ; Berger, Imre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c781t-8c9498758dd475df55814096922ecf5d8fb34f6cf710e19af24a2b28c22d52303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/1647/2230/2233</topic><topic>631/337/572/2102</topic><topic>631/45/612/822</topic><topic>631/535/1258/1259</topic><topic>Architecture</topic><topic>Asymmetry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological research</topic><topic>Cells, Cultured</topic><topic>Cryoelectron Microscopy</topic><topic>Crystal structure</topic><topic>HeLa Cells</topic><topic>Human genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Insects</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Observations</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>RNA polymerase</topic><topic>Science</topic><topic>Software packages</topic><topic>Structure</topic><topic>Symmetry</topic><topic>Transcription Factor TFIID - chemistry</topic><topic>Transcription Factor TFIID - genetics</topic><topic>Transcription Factor TFIID - metabolism</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bieniossek, Christoph</creatorcontrib><creatorcontrib>Papai, Gabor</creatorcontrib><creatorcontrib>Schaffitzel, Christiane</creatorcontrib><creatorcontrib>Garzoni, Frederic</creatorcontrib><creatorcontrib>Chaillet, Maxime</creatorcontrib><creatorcontrib>Scheer, Elisabeth</creatorcontrib><creatorcontrib>Papadopoulos, Petros</creatorcontrib><creatorcontrib>Tora, Laszlo</creatorcontrib><creatorcontrib>Schultz, Patrick</creatorcontrib><creatorcontrib>Berger, Imre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bieniossek, Christoph</au><au>Papai, Gabor</au><au>Schaffitzel, Christiane</au><au>Garzoni, Frederic</au><au>Chaillet, Maxime</au><au>Scheer, Elisabeth</au><au>Papadopoulos, Petros</au><au>Tora, Laszlo</au><au>Schultz, Patrick</au><au>Berger, Imre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The architecture of human general transcription factor TFIID core complex</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-01-31</date><risdate>2013</risdate><volume>493</volume><issue>7434</issue><spage>699</spage><epage>702</epage><pages>699-702</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The structures of three distinct human transcription factor IID (TFIID) protein assemblies are solved using cryo-electron microscopy; by incorporating TAF8 and TAF10, the key structural changes that remodel TFIID during assembly are determined, particularly the transition from a symmetric core-TFIID to an asymmetric holo-complex.
TFIID transcription factor core structure
TFIID is the first general transcription factor to bind gene promoters prior to gene transcription by RNA polymerase II, triggering pre-initiation complex formation and functioning as a coactivator. TFIID is a large multiprotein complex composed of TATA-box-binding protein (TBP) and TBP-associated factors (TAFs). Imre Berger and colleagues now determine structures of three distinct human TFIID protein assemblies using cryo-electron microscopy. In their model for step-wise assembly of the complex, the transition from a symmetric core TFIID to an asymmetric holo-complex occurs upon binding of TAF8 and TAF10, which induces major conformational changes.
The initiation of gene transcription by RNA polymerase II is regulated by a plethora of proteins in human cells. The first general transcription factor to bind gene promoters is transcription factor IID (TFIID). TFIID triggers pre-initiation complex formation, functions as a coactivator by interacting with transcriptional activators and reads epigenetic marks
1
,
2
,
3
. TFIID is a megadalton-sized multiprotein complex composed of TATA-box-binding protein (TBP) and 13 TBP-associated factors (TAFs)
3
. Despite its crucial role, the detailed architecture and assembly mechanism of TFIID remain elusive. Histone fold domains are prevalent in TAFs, and histone-like tetramer and octamer structures have been proposed in TFIID
4
,
5
,
6
. A functional core-TFIID subcomplex was revealed in
Drosophila
nuclei, consisting of a subset of TAFs (TAF4, TAF5, TAF6, TAF9 and TAF12)
7
. These core subunits are thought to be present in two copies in holo-TFIID, in contrast to TBP and other TAFs that are present in a single copy
8
, conveying a transition from symmetry to asymmetry in the TFIID assembly pathway. Here we present the structure of human core-TFIID determined by cryo-electron microscopy at 11.6 Å resolution. Our structure reveals a two-fold symmetric, interlaced architecture, with pronounced protrusions, that accommodates all conserved structural features of the TAFs including the histone folds. We further demonstrate that binding of one TAF8–TAF10 complex breaks the original symmetry of core-TFIID. We propose that the resulting asymmetric structure serves as a functional scaffold to nucleate holo-TFIID assembly, by accreting one copy each of the remaining TAFs and TBP.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23292512</pmid><doi>10.1038/nature11791</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7398-2250</orcidid><orcidid>https://orcid.org/0000-0002-2779-8679</orcidid><orcidid>https://orcid.org/0000-0001-7518-9045</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2013-01, Vol.493 (7434), p.699-702 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03464614v1 |
source | MEDLINE; Nature Publishing Group; Springer Nature - Complete Springer Journals |
subjects | 631/1647/2230/2233 631/337/572/2102 631/45/612/822 631/535/1258/1259 Architecture Asymmetry Biochemistry, Molecular Biology Biological research Cells, Cultured Cryoelectron Microscopy Crystal structure HeLa Cells Human genetics Humanities and Social Sciences Humans Insects letter Life Sciences Microscopy Models, Molecular multidisciplinary Observations Protein Binding Protein Structure, Tertiary RNA polymerase Science Software packages Structure Symmetry Transcription Factor TFIID - chemistry Transcription Factor TFIID - genetics Transcription Factor TFIID - metabolism Transcription factors |
title | The architecture of human general transcription factor TFIID core complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20architecture%20of%20human%20general%20transcription%20factor%20TFIID%20core%20complex&rft.jtitle=Nature%20(London)&rft.au=Bieniossek,%20Christoph&rft.date=2013-01-31&rft.volume=493&rft.issue=7434&rft.spage=699&rft.epage=702&rft.pages=699-702&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature11791&rft_dat=%3Cgale_hal_p%3EA318105074%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315896671&rft_id=info:pmid/23292512&rft_galeid=A318105074&rfr_iscdi=true |