A level set approach to simulate grain growth with an evolving population of second phase particles

In numerous polycrystalline materials, grain size is controlled by second phase particles (SPPs) that hinder the grain boundaries (GBs) by pinning mechanisms. The Smith–Zener pinning (SZP) model describes the physical interaction between SPPs and GBs. Both of them can evolve when applying a heat tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modelling and simulation in materials science and engineering 2021-04, Vol.29 (3), p.35009
Hauptverfasser: Alvarado, Karen, Florez, Sebastian, Flipon, Baptiste, Bozzolo, Nathalie, Bernacki, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35009
container_title Modelling and simulation in materials science and engineering
container_volume 29
creator Alvarado, Karen
Florez, Sebastian
Flipon, Baptiste
Bozzolo, Nathalie
Bernacki, Marc
description In numerous polycrystalline materials, grain size is controlled by second phase particles (SPPs) that hinder the grain boundaries (GBs) by pinning mechanisms. The Smith–Zener pinning (SZP) model describes the physical interaction between SPPs and GBs. Both of them can evolve when applying a heat treatment to the material. As industrial forging processes involve hot deformation steps near the solvus temperature, it is thus of prime importance to characterize the evolution of the SPPs due to their impact on the final microstructure, notably on the grain size. The level set (LS) method is classically used to describe the influence of SPPs on grain growth (GG) by considering the simulated particles as inert and represented by static holes in the used finite element (FE) mesh. A new formalism to model GG mechanism under the influence of the SZP phenomenon, able to take into account evolving particles is proposed. It involves the representation of SPPs by a LS function and a particular numerical treatment around the grain interfaces encountering SPP, making possible the modelling of SPPs evolution without altering the undergoing pinning pressure. Validation and comparison of the new method regarding previous FE-LS formulation in 2D and 3D simulations and an application on GG under the influence of dissolving particles are described.
doi_str_mv 10.1088/1361-651X/abe0a7
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03463482v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03463482v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-4e3ecae04d984395d99686f845c00c36b2ee11db00cdc0861c59444b83aae2e23</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqWwM3plCD3HjuuMVQUUqRILSGzWxbk0RmkcxSEV_55ERSzv6Z7eveFj7F7AowBjVkJqkehMfK6wIMD1BVv8R5dsAbnOEpC5vGY3MX4BQGbS9YK5DW9opIZHGjh2XR_Q1XwIPPrjd4MD8UOPvp00nIaan_wk2HIaQzP69sC70M01H1oeqmnEhbbkXY2ReIf94F1D8ZZdVdhEuvvzJft4fnrf7pL928vrdrNPXLpeD4kiSQ4JVJkbJfOszHNtdGVU5gCc1EVKJERZTEfpwGjhslwpVRiJSCmlcskezrs1Nrbr_RH7HxvQ291mb-cMpNJSmXQUUxfOXdeHGHuq_h8E2BmonenZmZ49A5W_6Kxqvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A level set approach to simulate grain growth with an evolving population of second phase particles</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Alvarado, Karen ; Florez, Sebastian ; Flipon, Baptiste ; Bozzolo, Nathalie ; Bernacki, Marc</creator><creatorcontrib>Alvarado, Karen ; Florez, Sebastian ; Flipon, Baptiste ; Bozzolo, Nathalie ; Bernacki, Marc</creatorcontrib><description>In numerous polycrystalline materials, grain size is controlled by second phase particles (SPPs) that hinder the grain boundaries (GBs) by pinning mechanisms. The Smith–Zener pinning (SZP) model describes the physical interaction between SPPs and GBs. Both of them can evolve when applying a heat treatment to the material. As industrial forging processes involve hot deformation steps near the solvus temperature, it is thus of prime importance to characterize the evolution of the SPPs due to their impact on the final microstructure, notably on the grain size. The level set (LS) method is classically used to describe the influence of SPPs on grain growth (GG) by considering the simulated particles as inert and represented by static holes in the used finite element (FE) mesh. A new formalism to model GG mechanism under the influence of the SZP phenomenon, able to take into account evolving particles is proposed. It involves the representation of SPPs by a LS function and a particular numerical treatment around the grain interfaces encountering SPP, making possible the modelling of SPPs evolution without altering the undergoing pinning pressure. Validation and comparison of the new method regarding previous FE-LS formulation in 2D and 3D simulations and an application on GG under the influence of dissolving particles are described.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/1361-651X/abe0a7</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Computer Science ; Condensed Matter ; Engineering Sciences ; Materials ; Materials Science ; Modeling and Simulation ; Physics</subject><ispartof>Modelling and simulation in materials science and engineering, 2021-04, Vol.29 (3), p.35009</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-4e3ecae04d984395d99686f845c00c36b2ee11db00cdc0861c59444b83aae2e23</citedby><cites>FETCH-LOGICAL-c277t-4e3ecae04d984395d99686f845c00c36b2ee11db00cdc0861c59444b83aae2e23</cites><orcidid>0000-0002-5962-7700 ; 0000-0001-6804-1974 ; 0000-0003-3081-7292 ; 0000-0002-6677-2850 ; 0000-0002-8963-977X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03463482$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarado, Karen</creatorcontrib><creatorcontrib>Florez, Sebastian</creatorcontrib><creatorcontrib>Flipon, Baptiste</creatorcontrib><creatorcontrib>Bozzolo, Nathalie</creatorcontrib><creatorcontrib>Bernacki, Marc</creatorcontrib><title>A level set approach to simulate grain growth with an evolving population of second phase particles</title><title>Modelling and simulation in materials science and engineering</title><description>In numerous polycrystalline materials, grain size is controlled by second phase particles (SPPs) that hinder the grain boundaries (GBs) by pinning mechanisms. The Smith–Zener pinning (SZP) model describes the physical interaction between SPPs and GBs. Both of them can evolve when applying a heat treatment to the material. As industrial forging processes involve hot deformation steps near the solvus temperature, it is thus of prime importance to characterize the evolution of the SPPs due to their impact on the final microstructure, notably on the grain size. The level set (LS) method is classically used to describe the influence of SPPs on grain growth (GG) by considering the simulated particles as inert and represented by static holes in the used finite element (FE) mesh. A new formalism to model GG mechanism under the influence of the SZP phenomenon, able to take into account evolving particles is proposed. It involves the representation of SPPs by a LS function and a particular numerical treatment around the grain interfaces encountering SPP, making possible the modelling of SPPs evolution without altering the undergoing pinning pressure. Validation and comparison of the new method regarding previous FE-LS formulation in 2D and 3D simulations and an application on GG under the influence of dissolving particles are described.</description><subject>Computer Science</subject><subject>Condensed Matter</subject><subject>Engineering Sciences</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Modeling and Simulation</subject><subject>Physics</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhS0EEqWwM3plCD3HjuuMVQUUqRILSGzWxbk0RmkcxSEV_55ERSzv6Z7eveFj7F7AowBjVkJqkehMfK6wIMD1BVv8R5dsAbnOEpC5vGY3MX4BQGbS9YK5DW9opIZHGjh2XR_Q1XwIPPrjd4MD8UOPvp00nIaan_wk2HIaQzP69sC70M01H1oeqmnEhbbkXY2ReIf94F1D8ZZdVdhEuvvzJft4fnrf7pL928vrdrNPXLpeD4kiSQ4JVJkbJfOszHNtdGVU5gCc1EVKJERZTEfpwGjhslwpVRiJSCmlcskezrs1Nrbr_RH7HxvQ291mb-cMpNJSmXQUUxfOXdeHGHuq_h8E2BmonenZmZ49A5W_6Kxqvw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Alvarado, Karen</creator><creator>Florez, Sebastian</creator><creator>Flipon, Baptiste</creator><creator>Bozzolo, Nathalie</creator><creator>Bernacki, Marc</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5962-7700</orcidid><orcidid>https://orcid.org/0000-0001-6804-1974</orcidid><orcidid>https://orcid.org/0000-0003-3081-7292</orcidid><orcidid>https://orcid.org/0000-0002-6677-2850</orcidid><orcidid>https://orcid.org/0000-0002-8963-977X</orcidid></search><sort><creationdate>20210401</creationdate><title>A level set approach to simulate grain growth with an evolving population of second phase particles</title><author>Alvarado, Karen ; Florez, Sebastian ; Flipon, Baptiste ; Bozzolo, Nathalie ; Bernacki, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-4e3ecae04d984395d99686f845c00c36b2ee11db00cdc0861c59444b83aae2e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Condensed Matter</topic><topic>Engineering Sciences</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Modeling and Simulation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarado, Karen</creatorcontrib><creatorcontrib>Florez, Sebastian</creatorcontrib><creatorcontrib>Flipon, Baptiste</creatorcontrib><creatorcontrib>Bozzolo, Nathalie</creatorcontrib><creatorcontrib>Bernacki, Marc</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarado, Karen</au><au>Florez, Sebastian</au><au>Flipon, Baptiste</au><au>Bozzolo, Nathalie</au><au>Bernacki, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A level set approach to simulate grain growth with an evolving population of second phase particles</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>29</volume><issue>3</issue><spage>35009</spage><pages>35009-</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><abstract>In numerous polycrystalline materials, grain size is controlled by second phase particles (SPPs) that hinder the grain boundaries (GBs) by pinning mechanisms. The Smith–Zener pinning (SZP) model describes the physical interaction between SPPs and GBs. Both of them can evolve when applying a heat treatment to the material. As industrial forging processes involve hot deformation steps near the solvus temperature, it is thus of prime importance to characterize the evolution of the SPPs due to their impact on the final microstructure, notably on the grain size. The level set (LS) method is classically used to describe the influence of SPPs on grain growth (GG) by considering the simulated particles as inert and represented by static holes in the used finite element (FE) mesh. A new formalism to model GG mechanism under the influence of the SZP phenomenon, able to take into account evolving particles is proposed. It involves the representation of SPPs by a LS function and a particular numerical treatment around the grain interfaces encountering SPP, making possible the modelling of SPPs evolution without altering the undergoing pinning pressure. Validation and comparison of the new method regarding previous FE-LS formulation in 2D and 3D simulations and an application on GG under the influence of dissolving particles are described.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-651X/abe0a7</doi><orcidid>https://orcid.org/0000-0002-5962-7700</orcidid><orcidid>https://orcid.org/0000-0001-6804-1974</orcidid><orcidid>https://orcid.org/0000-0003-3081-7292</orcidid><orcidid>https://orcid.org/0000-0002-6677-2850</orcidid><orcidid>https://orcid.org/0000-0002-8963-977X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0965-0393
ispartof Modelling and simulation in materials science and engineering, 2021-04, Vol.29 (3), p.35009
issn 0965-0393
1361-651X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03463482v1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Computer Science
Condensed Matter
Engineering Sciences
Materials
Materials Science
Modeling and Simulation
Physics
title A level set approach to simulate grain growth with an evolving population of second phase particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20level%20set%20approach%20to%20simulate%20grain%20growth%20with%20an%20evolving%20population%20of%20second%20phase%20particles&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Alvarado,%20Karen&rft.date=2021-04-01&rft.volume=29&rft.issue=3&rft.spage=35009&rft.pages=35009-&rft.issn=0965-0393&rft.eissn=1361-651X&rft_id=info:doi/10.1088/1361-651X/abe0a7&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03463482v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true