Hexagonal Ge Grown by Molecular Beam Epitaxy on Self-Assisted GaAs Nanowires
Hexagonal group IV materials like silicon and germanium are expected to display remarkable optoelectronic properties for future development of photonic technologies. However, the fabrication of hexagonal group IV semiconductors within the vapor–liquid–solid method has been obtained using gold as a c...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2022-01, Vol.22 (1), p.32-36 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | Crystal growth & design |
container_volume | 22 |
creator | Dudko, Iuliia Dursap, Thomas Lamirand, Anne D Botella, Claude Regreny, Philippe Danescu, Alexandre Brottet, Solène Bugnet, Matthieu Walia, Sumeet Chauvin, Nicolas Penuelas, José |
description | Hexagonal group IV materials like silicon and germanium are expected to display remarkable optoelectronic properties for future development of photonic technologies. However, the fabrication of hexagonal group IV semiconductors within the vapor–liquid–solid method has been obtained using gold as a catalyst thus far. In this letter, we show the synthesis of hexagonal Ge on self-assisted GaAs nanowires using molecular beam epitaxy. With an accurate tuning of the Ga and As molecular beam flux, we selected the crystal phase, cubic or hexagonal, of the GaAs NWs during the growth. A 500-nm-long hexagonal segment of Ge with high structural quality and without any visible defects is obtained, and we show that Ge keeps the crystal phase of the core using scanning transmission electron microscopy. Finally X-ray photoelectron spectroscopy reveals a strong incorporation of As in the Ge. This study demonstrates the first growth of hexagonal Ge in the Au-free approach, integrated on silicon substrate. |
doi_str_mv | 10.1021/acs.cgd.1c00945 |
format | Article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03454186v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b304460593</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-310a3cd3d32045a97d324107da893e38729a18855815164b5ab0d8f53afae6b63</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqUws3pFKO05thNnDFWbIgUYgNm6JE5JlcaV3dL235OqhY3pPt2974ZHyD2DEYOQjbH0o3JRjVgJkAh5QQZMhiqIJcjL3ywUvyY33i8BII44H5B8bva4sB22NDM0c3bX0eJAX2xrym2Ljj4ZXNHputng_kBtR99NWwep943fmIpmmHr6ip3dNc74W3JVY-vN3XkOyeds-jGZB_lb9jxJ8wC5DDcBZ4C8rHjFQxASk7gPgkFcoUq44SoOE2RKSamYZJEoJBZQqVpyrNFERcSH5OH09wtbvXbNCt1BW2z0PM31cQdcSMFU9M16dnxiS2e9d6b-KzDQR3G6F6d7cfosrm88nhrHw9JuXS_H_0v_ANz1blU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hexagonal Ge Grown by Molecular Beam Epitaxy on Self-Assisted GaAs Nanowires</title><source>American Chemical Society Journals</source><creator>Dudko, Iuliia ; Dursap, Thomas ; Lamirand, Anne D ; Botella, Claude ; Regreny, Philippe ; Danescu, Alexandre ; Brottet, Solène ; Bugnet, Matthieu ; Walia, Sumeet ; Chauvin, Nicolas ; Penuelas, José</creator><creatorcontrib>Dudko, Iuliia ; Dursap, Thomas ; Lamirand, Anne D ; Botella, Claude ; Regreny, Philippe ; Danescu, Alexandre ; Brottet, Solène ; Bugnet, Matthieu ; Walia, Sumeet ; Chauvin, Nicolas ; Penuelas, José</creatorcontrib><description>Hexagonal group IV materials like silicon and germanium are expected to display remarkable optoelectronic properties for future development of photonic technologies. However, the fabrication of hexagonal group IV semiconductors within the vapor–liquid–solid method has been obtained using gold as a catalyst thus far. In this letter, we show the synthesis of hexagonal Ge on self-assisted GaAs nanowires using molecular beam epitaxy. With an accurate tuning of the Ga and As molecular beam flux, we selected the crystal phase, cubic or hexagonal, of the GaAs NWs during the growth. A 500-nm-long hexagonal segment of Ge with high structural quality and without any visible defects is obtained, and we show that Ge keeps the crystal phase of the core using scanning transmission electron microscopy. Finally X-ray photoelectron spectroscopy reveals a strong incorporation of As in the Ge. This study demonstrates the first growth of hexagonal Ge in the Au-free approach, integrated on silicon substrate.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.1c00945</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Condensed Matter ; Engineering Sciences ; Materials Science ; Micro and nanotechnologies ; Microelectronics ; Physics</subject><ispartof>Crystal growth & design, 2022-01, Vol.22 (1), p.32-36</ispartof><rights>2021 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-310a3cd3d32045a97d324107da893e38729a18855815164b5ab0d8f53afae6b63</citedby><cites>FETCH-LOGICAL-a352t-310a3cd3d32045a97d324107da893e38729a18855815164b5ab0d8f53afae6b63</cites><orcidid>0000-0002-5635-7346 ; 0000-0002-8272-8964 ; 0000-0002-3645-9847 ; 0000-0003-2200-2405 ; 0000-0003-2410-9425 ; 0000-0003-0827-1123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.cgd.1c00945$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.cgd.1c00945$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03454186$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dudko, Iuliia</creatorcontrib><creatorcontrib>Dursap, Thomas</creatorcontrib><creatorcontrib>Lamirand, Anne D</creatorcontrib><creatorcontrib>Botella, Claude</creatorcontrib><creatorcontrib>Regreny, Philippe</creatorcontrib><creatorcontrib>Danescu, Alexandre</creatorcontrib><creatorcontrib>Brottet, Solène</creatorcontrib><creatorcontrib>Bugnet, Matthieu</creatorcontrib><creatorcontrib>Walia, Sumeet</creatorcontrib><creatorcontrib>Chauvin, Nicolas</creatorcontrib><creatorcontrib>Penuelas, José</creatorcontrib><title>Hexagonal Ge Grown by Molecular Beam Epitaxy on Self-Assisted GaAs Nanowires</title><title>Crystal growth & design</title><addtitle>Cryst. Growth Des</addtitle><description>Hexagonal group IV materials like silicon and germanium are expected to display remarkable optoelectronic properties for future development of photonic technologies. However, the fabrication of hexagonal group IV semiconductors within the vapor–liquid–solid method has been obtained using gold as a catalyst thus far. In this letter, we show the synthesis of hexagonal Ge on self-assisted GaAs nanowires using molecular beam epitaxy. With an accurate tuning of the Ga and As molecular beam flux, we selected the crystal phase, cubic or hexagonal, of the GaAs NWs during the growth. A 500-nm-long hexagonal segment of Ge with high structural quality and without any visible defects is obtained, and we show that Ge keeps the crystal phase of the core using scanning transmission electron microscopy. Finally X-ray photoelectron spectroscopy reveals a strong incorporation of As in the Ge. This study demonstrates the first growth of hexagonal Ge in the Au-free approach, integrated on silicon substrate.</description><subject>Condensed Matter</subject><subject>Engineering Sciences</subject><subject>Materials Science</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Physics</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EEqUws3pFKO05thNnDFWbIgUYgNm6JE5JlcaV3dL235OqhY3pPt2974ZHyD2DEYOQjbH0o3JRjVgJkAh5QQZMhiqIJcjL3ywUvyY33i8BII44H5B8bva4sB22NDM0c3bX0eJAX2xrym2Ljj4ZXNHputng_kBtR99NWwep943fmIpmmHr6ip3dNc74W3JVY-vN3XkOyeds-jGZB_lb9jxJ8wC5DDcBZ4C8rHjFQxASk7gPgkFcoUq44SoOE2RKSamYZJEoJBZQqVpyrNFERcSH5OH09wtbvXbNCt1BW2z0PM31cQdcSMFU9M16dnxiS2e9d6b-KzDQR3G6F6d7cfosrm88nhrHw9JuXS_H_0v_ANz1blU</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Dudko, Iuliia</creator><creator>Dursap, Thomas</creator><creator>Lamirand, Anne D</creator><creator>Botella, Claude</creator><creator>Regreny, Philippe</creator><creator>Danescu, Alexandre</creator><creator>Brottet, Solène</creator><creator>Bugnet, Matthieu</creator><creator>Walia, Sumeet</creator><creator>Chauvin, Nicolas</creator><creator>Penuelas, José</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5635-7346</orcidid><orcidid>https://orcid.org/0000-0002-8272-8964</orcidid><orcidid>https://orcid.org/0000-0002-3645-9847</orcidid><orcidid>https://orcid.org/0000-0003-2200-2405</orcidid><orcidid>https://orcid.org/0000-0003-2410-9425</orcidid><orcidid>https://orcid.org/0000-0003-0827-1123</orcidid></search><sort><creationdate>20220105</creationdate><title>Hexagonal Ge Grown by Molecular Beam Epitaxy on Self-Assisted GaAs Nanowires</title><author>Dudko, Iuliia ; Dursap, Thomas ; Lamirand, Anne D ; Botella, Claude ; Regreny, Philippe ; Danescu, Alexandre ; Brottet, Solène ; Bugnet, Matthieu ; Walia, Sumeet ; Chauvin, Nicolas ; Penuelas, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-310a3cd3d32045a97d324107da893e38729a18855815164b5ab0d8f53afae6b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Condensed Matter</topic><topic>Engineering Sciences</topic><topic>Materials Science</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudko, Iuliia</creatorcontrib><creatorcontrib>Dursap, Thomas</creatorcontrib><creatorcontrib>Lamirand, Anne D</creatorcontrib><creatorcontrib>Botella, Claude</creatorcontrib><creatorcontrib>Regreny, Philippe</creatorcontrib><creatorcontrib>Danescu, Alexandre</creatorcontrib><creatorcontrib>Brottet, Solène</creatorcontrib><creatorcontrib>Bugnet, Matthieu</creatorcontrib><creatorcontrib>Walia, Sumeet</creatorcontrib><creatorcontrib>Chauvin, Nicolas</creatorcontrib><creatorcontrib>Penuelas, José</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Crystal growth & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudko, Iuliia</au><au>Dursap, Thomas</au><au>Lamirand, Anne D</au><au>Botella, Claude</au><au>Regreny, Philippe</au><au>Danescu, Alexandre</au><au>Brottet, Solène</au><au>Bugnet, Matthieu</au><au>Walia, Sumeet</au><au>Chauvin, Nicolas</au><au>Penuelas, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hexagonal Ge Grown by Molecular Beam Epitaxy on Self-Assisted GaAs Nanowires</atitle><jtitle>Crystal growth & design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2022-01-05</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>32</spage><epage>36</epage><pages>32-36</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Hexagonal group IV materials like silicon and germanium are expected to display remarkable optoelectronic properties for future development of photonic technologies. However, the fabrication of hexagonal group IV semiconductors within the vapor–liquid–solid method has been obtained using gold as a catalyst thus far. In this letter, we show the synthesis of hexagonal Ge on self-assisted GaAs nanowires using molecular beam epitaxy. With an accurate tuning of the Ga and As molecular beam flux, we selected the crystal phase, cubic or hexagonal, of the GaAs NWs during the growth. A 500-nm-long hexagonal segment of Ge with high structural quality and without any visible defects is obtained, and we show that Ge keeps the crystal phase of the core using scanning transmission electron microscopy. Finally X-ray photoelectron spectroscopy reveals a strong incorporation of As in the Ge. This study demonstrates the first growth of hexagonal Ge in the Au-free approach, integrated on silicon substrate.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.1c00945</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5635-7346</orcidid><orcidid>https://orcid.org/0000-0002-8272-8964</orcidid><orcidid>https://orcid.org/0000-0002-3645-9847</orcidid><orcidid>https://orcid.org/0000-0003-2200-2405</orcidid><orcidid>https://orcid.org/0000-0003-2410-9425</orcidid><orcidid>https://orcid.org/0000-0003-0827-1123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7483 |
ispartof | Crystal growth & design, 2022-01, Vol.22 (1), p.32-36 |
issn | 1528-7483 1528-7505 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03454186v1 |
source | American Chemical Society Journals |
subjects | Condensed Matter Engineering Sciences Materials Science Micro and nanotechnologies Microelectronics Physics |
title | Hexagonal Ge Grown by Molecular Beam Epitaxy on Self-Assisted GaAs Nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hexagonal%20Ge%20Grown%20by%20Molecular%20Beam%20Epitaxy%20on%20Self-Assisted%20GaAs%20Nanowires&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Dudko,%20Iuliia&rft.date=2022-01-05&rft.volume=22&rft.issue=1&rft.spage=32&rft.epage=36&rft.pages=32-36&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.1c00945&rft_dat=%3Cacs_hal_p%3Eb304460593%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |