Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling

This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2021-04, Vol.61 (4), p.1129-1138
Hauptverfasser: Collet, Anatole, Serghei, Anatoli, Lhost, Olivier, Trolez, Yves, Cassagnau, Philippe, Fulchiron, René
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1138
container_issue 4
container_start_page 1129
container_title Polymer engineering and science
container_volume 61
creator Collet, Anatole
Serghei, Anatoli
Lhost, Olivier
Trolez, Yves
Cassagnau, Philippe
Fulchiron, René
description This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity to evolve asymptotically to a steady level attesting to an equilibrium between structuring and break up mechanisms in the melted polymer. Numerous experiments were conducted to cover a wide range of shear rate from 0.05 to 10 s−1 and for carbon nanotubes concentrations between 1.3 and 2.9 vol%. A model is proposed to predict the conductivity evolution under shear deformation using a simple kinetic equation inserted in a percolation law. Structuring parameter was found to be solely dependent on the temperature whereas shear induced modification terms were found to be mostly driven by the shear rate and the fillers content.
doi_str_mv 10.1002/pen.25651
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03446361v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662343591</galeid><sourcerecordid>A662343591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6101-9e57d22d091cf1a3e0374f87c379254daba4db058aca09a1e1ff2e10a2e421d53</originalsourceid><addsrcrecordid>eNp10l1r2zAUBmAzNljW7WL_QDAYFOZUH7Zj7y6UbC2EbezjWsjScayiSJ4kN_W_nzKPskCKwQbznBfp5WTZW4KXBGN6NYBd0rIqybNsQcqizmnFiufZAmNGc1bX9cvsVQh3OFlWNovssDEgo9dSGCSdVaOM-l7HCY1WgUehB-FRZ9wBuQ7tnYlg0eDMBLGfDFhAnTYGFDro2CMpfOssssK6OLYQPqLNwwBe78HGlC-sShEKjLa719mLTpgAb_59L7JfnzY_r2_y7dfPt9frbS4rgkneQLlSlCrcENkRwQCzVdHVK8lWDS0LJVpRqBaXtZACN4IA6ToKBAsKBSWqZBfZ5ZzbC8OHdBThJ-6E5jfrLT_-w6woKlaRe5Lsu9kO3v0eIUR-50Zv0_E4LXGzoqRMrT2qnTDAte1c9ELudZB8XVWUFanXY1Z-Ru1SY14YZyHVBqd-ecanR8Fey7MD708GkonwEHdiDIGfwsun4e2P76f2w3-2HYO2ENIr6F0fwzxyLlp6F4KH7rFhgvlxHXlaR_53HZO9mu0hXWR6GvJvmy_zxB9D4N5j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509721502</pqid></control><display><type>article</type><title>Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling</title><source>Wiley Online Library All Journals</source><creator>Collet, Anatole ; Serghei, Anatoli ; Lhost, Olivier ; Trolez, Yves ; Cassagnau, Philippe ; Fulchiron, René</creator><creatorcontrib>Collet, Anatole ; Serghei, Anatoli ; Lhost, Olivier ; Trolez, Yves ; Cassagnau, Philippe ; Fulchiron, René</creatorcontrib><description>This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity to evolve asymptotically to a steady level attesting to an equilibrium between structuring and break up mechanisms in the melted polymer. Numerous experiments were conducted to cover a wide range of shear rate from 0.05 to 10 s−1 and for carbon nanotubes concentrations between 1.3 and 2.9 vol%. A model is proposed to predict the conductivity evolution under shear deformation using a simple kinetic equation inserted in a percolation law. Structuring parameter was found to be solely dependent on the temperature whereas shear induced modification terms were found to be mostly driven by the shear rate and the fillers content.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25651</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Analysis ; Carbon ; Carbon nanotubes ; conducting polymers ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Engineering models ; Engineering Sciences ; Evolution ; Fillers ; Kinetic equations ; Materials ; Mechanical properties ; melt ; modeling ; nanocomposites ; Nanotubes ; Percolation ; Physics ; Polyethylene ; Polyethylenes ; Polymer matrix composites ; Polymers ; Rheology ; shear ; Shear deformation ; Shear flow ; Shear forces ; Shear rate ; Temperature dependence</subject><ispartof>Polymer engineering and science, 2021-04, Vol.61 (4), p.1129-1138</ispartof><rights>2021 Society of Plastics Engineers</rights><rights>COPYRIGHT 2021 Society of Plastics Engineers, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6101-9e57d22d091cf1a3e0374f87c379254daba4db058aca09a1e1ff2e10a2e421d53</citedby><cites>FETCH-LOGICAL-c6101-9e57d22d091cf1a3e0374f87c379254daba4db058aca09a1e1ff2e10a2e421d53</cites><orcidid>0000-0002-7714-9298 ; 0000-0001-8217-8635 ; 0000-0002-6656-850X ; 0000-0002-7109-1400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03446361$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Collet, Anatole</creatorcontrib><creatorcontrib>Serghei, Anatoli</creatorcontrib><creatorcontrib>Lhost, Olivier</creatorcontrib><creatorcontrib>Trolez, Yves</creatorcontrib><creatorcontrib>Cassagnau, Philippe</creatorcontrib><creatorcontrib>Fulchiron, René</creatorcontrib><title>Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling</title><title>Polymer engineering and science</title><description>This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity to evolve asymptotically to a steady level attesting to an equilibrium between structuring and break up mechanisms in the melted polymer. Numerous experiments were conducted to cover a wide range of shear rate from 0.05 to 10 s−1 and for carbon nanotubes concentrations between 1.3 and 2.9 vol%. A model is proposed to predict the conductivity evolution under shear deformation using a simple kinetic equation inserted in a percolation law. Structuring parameter was found to be solely dependent on the temperature whereas shear induced modification terms were found to be mostly driven by the shear rate and the fillers content.</description><subject>Analysis</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>conducting polymers</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Engineering models</subject><subject>Engineering Sciences</subject><subject>Evolution</subject><subject>Fillers</subject><subject>Kinetic equations</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>melt</subject><subject>modeling</subject><subject>nanocomposites</subject><subject>Nanotubes</subject><subject>Percolation</subject><subject>Physics</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Rheology</subject><subject>shear</subject><subject>Shear deformation</subject><subject>Shear flow</subject><subject>Shear forces</subject><subject>Shear rate</subject><subject>Temperature dependence</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10l1r2zAUBmAzNljW7WL_QDAYFOZUH7Zj7y6UbC2EbezjWsjScayiSJ4kN_W_nzKPskCKwQbznBfp5WTZW4KXBGN6NYBd0rIqybNsQcqizmnFiufZAmNGc1bX9cvsVQh3OFlWNovssDEgo9dSGCSdVaOM-l7HCY1WgUehB-FRZ9wBuQ7tnYlg0eDMBLGfDFhAnTYGFDro2CMpfOssssK6OLYQPqLNwwBe78HGlC-sShEKjLa719mLTpgAb_59L7JfnzY_r2_y7dfPt9frbS4rgkneQLlSlCrcENkRwQCzVdHVK8lWDS0LJVpRqBaXtZACN4IA6ToKBAsKBSWqZBfZ5ZzbC8OHdBThJ-6E5jfrLT_-w6woKlaRe5Lsu9kO3v0eIUR-50Zv0_E4LXGzoqRMrT2qnTDAte1c9ELudZB8XVWUFanXY1Z-Ru1SY14YZyHVBqd-ecanR8Fey7MD708GkonwEHdiDIGfwsun4e2P76f2w3-2HYO2ENIr6F0fwzxyLlp6F4KH7rFhgvlxHXlaR_53HZO9mu0hXWR6GvJvmy_zxB9D4N5j</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Collet, Anatole</creator><creator>Serghei, Anatoli</creator><creator>Lhost, Olivier</creator><creator>Trolez, Yves</creator><creator>Cassagnau, Philippe</creator><creator>Fulchiron, René</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7714-9298</orcidid><orcidid>https://orcid.org/0000-0001-8217-8635</orcidid><orcidid>https://orcid.org/0000-0002-6656-850X</orcidid><orcidid>https://orcid.org/0000-0002-7109-1400</orcidid></search><sort><creationdate>202104</creationdate><title>Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling</title><author>Collet, Anatole ; Serghei, Anatoli ; Lhost, Olivier ; Trolez, Yves ; Cassagnau, Philippe ; Fulchiron, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6101-9e57d22d091cf1a3e0374f87c379254daba4db058aca09a1e1ff2e10a2e421d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>conducting polymers</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Engineering models</topic><topic>Engineering Sciences</topic><topic>Evolution</topic><topic>Fillers</topic><topic>Kinetic equations</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>melt</topic><topic>modeling</topic><topic>nanocomposites</topic><topic>Nanotubes</topic><topic>Percolation</topic><topic>Physics</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Rheology</topic><topic>shear</topic><topic>Shear deformation</topic><topic>Shear flow</topic><topic>Shear forces</topic><topic>Shear rate</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collet, Anatole</creatorcontrib><creatorcontrib>Serghei, Anatoli</creatorcontrib><creatorcontrib>Lhost, Olivier</creatorcontrib><creatorcontrib>Trolez, Yves</creatorcontrib><creatorcontrib>Cassagnau, Philippe</creatorcontrib><creatorcontrib>Fulchiron, René</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collet, Anatole</au><au>Serghei, Anatoli</au><au>Lhost, Olivier</au><au>Trolez, Yves</au><au>Cassagnau, Philippe</au><au>Fulchiron, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling</atitle><jtitle>Polymer engineering and science</jtitle><date>2021-04</date><risdate>2021</risdate><volume>61</volume><issue>4</issue><spage>1129</spage><epage>1138</epage><pages>1129-1138</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity to evolve asymptotically to a steady level attesting to an equilibrium between structuring and break up mechanisms in the melted polymer. Numerous experiments were conducted to cover a wide range of shear rate from 0.05 to 10 s−1 and for carbon nanotubes concentrations between 1.3 and 2.9 vol%. A model is proposed to predict the conductivity evolution under shear deformation using a simple kinetic equation inserted in a percolation law. Structuring parameter was found to be solely dependent on the temperature whereas shear induced modification terms were found to be mostly driven by the shear rate and the fillers content.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.25651</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7714-9298</orcidid><orcidid>https://orcid.org/0000-0001-8217-8635</orcidid><orcidid>https://orcid.org/0000-0002-6656-850X</orcidid><orcidid>https://orcid.org/0000-0002-7109-1400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2021-04, Vol.61 (4), p.1129-1138
issn 0032-3888
1548-2634
language eng
recordid cdi_hal_primary_oai_HAL_hal_03446361v1
source Wiley Online Library All Journals
subjects Analysis
Carbon
Carbon nanotubes
conducting polymers
Electric properties
Electrical conductivity
Electrical resistivity
Engineering models
Engineering Sciences
Evolution
Fillers
Kinetic equations
Materials
Mechanical properties
melt
modeling
nanocomposites
Nanotubes
Percolation
Physics
Polyethylene
Polyethylenes
Polymer matrix composites
Polymers
Rheology
shear
Shear deformation
Shear flow
Shear forces
Shear rate
Temperature dependence
title Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20conductivity%20under%20shear%20flow%20of%20molten%20polyethylene%20filled%20with%20carbon%20nanotubes:%20Experimental%20and%20modeling&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Collet,%20Anatole&rft.date=2021-04&rft.volume=61&rft.issue=4&rft.spage=1129&rft.epage=1138&rft.pages=1129-1138&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25651&rft_dat=%3Cgale_hal_p%3EA662343591%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509721502&rft_id=info:pmid/&rft_galeid=A662343591&rfr_iscdi=true