Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling
This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2021-04, Vol.61 (4), p.1129-1138 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1138 |
---|---|
container_issue | 4 |
container_start_page | 1129 |
container_title | Polymer engineering and science |
container_volume | 61 |
creator | Collet, Anatole Serghei, Anatoli Lhost, Olivier Trolez, Yves Cassagnau, Philippe Fulchiron, René |
description | This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity to evolve asymptotically to a steady level attesting to an equilibrium between structuring and break up mechanisms in the melted polymer. Numerous experiments were conducted to cover a wide range of shear rate from 0.05 to 10 s−1 and for carbon nanotubes concentrations between 1.3 and 2.9 vol%. A model is proposed to predict the conductivity evolution under shear deformation using a simple kinetic equation inserted in a percolation law. Structuring parameter was found to be solely dependent on the temperature whereas shear induced modification terms were found to be mostly driven by the shear rate and the fillers content. |
doi_str_mv | 10.1002/pen.25651 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03446361v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662343591</galeid><sourcerecordid>A662343591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6101-9e57d22d091cf1a3e0374f87c379254daba4db058aca09a1e1ff2e10a2e421d53</originalsourceid><addsrcrecordid>eNp10l1r2zAUBmAzNljW7WL_QDAYFOZUH7Zj7y6UbC2EbezjWsjScayiSJ4kN_W_nzKPskCKwQbznBfp5WTZW4KXBGN6NYBd0rIqybNsQcqizmnFiufZAmNGc1bX9cvsVQh3OFlWNovssDEgo9dSGCSdVaOM-l7HCY1WgUehB-FRZ9wBuQ7tnYlg0eDMBLGfDFhAnTYGFDro2CMpfOssssK6OLYQPqLNwwBe78HGlC-sShEKjLa719mLTpgAb_59L7JfnzY_r2_y7dfPt9frbS4rgkneQLlSlCrcENkRwQCzVdHVK8lWDS0LJVpRqBaXtZACN4IA6ToKBAsKBSWqZBfZ5ZzbC8OHdBThJ-6E5jfrLT_-w6woKlaRe5Lsu9kO3v0eIUR-50Zv0_E4LXGzoqRMrT2qnTDAte1c9ELudZB8XVWUFanXY1Z-Ru1SY14YZyHVBqd-ecanR8Fey7MD708GkonwEHdiDIGfwsun4e2P76f2w3-2HYO2ENIr6F0fwzxyLlp6F4KH7rFhgvlxHXlaR_53HZO9mu0hXWR6GvJvmy_zxB9D4N5j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509721502</pqid></control><display><type>article</type><title>Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling</title><source>Wiley Online Library All Journals</source><creator>Collet, Anatole ; Serghei, Anatoli ; Lhost, Olivier ; Trolez, Yves ; Cassagnau, Philippe ; Fulchiron, René</creator><creatorcontrib>Collet, Anatole ; Serghei, Anatoli ; Lhost, Olivier ; Trolez, Yves ; Cassagnau, Philippe ; Fulchiron, René</creatorcontrib><description>This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity to evolve asymptotically to a steady level attesting to an equilibrium between structuring and break up mechanisms in the melted polymer. Numerous experiments were conducted to cover a wide range of shear rate from 0.05 to 10 s−1 and for carbon nanotubes concentrations between 1.3 and 2.9 vol%. A model is proposed to predict the conductivity evolution under shear deformation using a simple kinetic equation inserted in a percolation law. Structuring parameter was found to be solely dependent on the temperature whereas shear induced modification terms were found to be mostly driven by the shear rate and the fillers content.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25651</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Analysis ; Carbon ; Carbon nanotubes ; conducting polymers ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Engineering models ; Engineering Sciences ; Evolution ; Fillers ; Kinetic equations ; Materials ; Mechanical properties ; melt ; modeling ; nanocomposites ; Nanotubes ; Percolation ; Physics ; Polyethylene ; Polyethylenes ; Polymer matrix composites ; Polymers ; Rheology ; shear ; Shear deformation ; Shear flow ; Shear forces ; Shear rate ; Temperature dependence</subject><ispartof>Polymer engineering and science, 2021-04, Vol.61 (4), p.1129-1138</ispartof><rights>2021 Society of Plastics Engineers</rights><rights>COPYRIGHT 2021 Society of Plastics Engineers, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6101-9e57d22d091cf1a3e0374f87c379254daba4db058aca09a1e1ff2e10a2e421d53</citedby><cites>FETCH-LOGICAL-c6101-9e57d22d091cf1a3e0374f87c379254daba4db058aca09a1e1ff2e10a2e421d53</cites><orcidid>0000-0002-7714-9298 ; 0000-0001-8217-8635 ; 0000-0002-6656-850X ; 0000-0002-7109-1400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03446361$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Collet, Anatole</creatorcontrib><creatorcontrib>Serghei, Anatoli</creatorcontrib><creatorcontrib>Lhost, Olivier</creatorcontrib><creatorcontrib>Trolez, Yves</creatorcontrib><creatorcontrib>Cassagnau, Philippe</creatorcontrib><creatorcontrib>Fulchiron, René</creatorcontrib><title>Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling</title><title>Polymer engineering and science</title><description>This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity to evolve asymptotically to a steady level attesting to an equilibrium between structuring and break up mechanisms in the melted polymer. Numerous experiments were conducted to cover a wide range of shear rate from 0.05 to 10 s−1 and for carbon nanotubes concentrations between 1.3 and 2.9 vol%. A model is proposed to predict the conductivity evolution under shear deformation using a simple kinetic equation inserted in a percolation law. Structuring parameter was found to be solely dependent on the temperature whereas shear induced modification terms were found to be mostly driven by the shear rate and the fillers content.</description><subject>Analysis</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>conducting polymers</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Engineering models</subject><subject>Engineering Sciences</subject><subject>Evolution</subject><subject>Fillers</subject><subject>Kinetic equations</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>melt</subject><subject>modeling</subject><subject>nanocomposites</subject><subject>Nanotubes</subject><subject>Percolation</subject><subject>Physics</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Rheology</subject><subject>shear</subject><subject>Shear deformation</subject><subject>Shear flow</subject><subject>Shear forces</subject><subject>Shear rate</subject><subject>Temperature dependence</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10l1r2zAUBmAzNljW7WL_QDAYFOZUH7Zj7y6UbC2EbezjWsjScayiSJ4kN_W_nzKPskCKwQbznBfp5WTZW4KXBGN6NYBd0rIqybNsQcqizmnFiufZAmNGc1bX9cvsVQh3OFlWNovssDEgo9dSGCSdVaOM-l7HCY1WgUehB-FRZ9wBuQ7tnYlg0eDMBLGfDFhAnTYGFDro2CMpfOssssK6OLYQPqLNwwBe78HGlC-sShEKjLa719mLTpgAb_59L7JfnzY_r2_y7dfPt9frbS4rgkneQLlSlCrcENkRwQCzVdHVK8lWDS0LJVpRqBaXtZACN4IA6ToKBAsKBSWqZBfZ5ZzbC8OHdBThJ-6E5jfrLT_-w6woKlaRe5Lsu9kO3v0eIUR-50Zv0_E4LXGzoqRMrT2qnTDAte1c9ELudZB8XVWUFanXY1Z-Ru1SY14YZyHVBqd-ecanR8Fey7MD708GkonwEHdiDIGfwsun4e2P76f2w3-2HYO2ENIr6F0fwzxyLlp6F4KH7rFhgvlxHXlaR_53HZO9mu0hXWR6GvJvmy_zxB9D4N5j</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Collet, Anatole</creator><creator>Serghei, Anatoli</creator><creator>Lhost, Olivier</creator><creator>Trolez, Yves</creator><creator>Cassagnau, Philippe</creator><creator>Fulchiron, René</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7714-9298</orcidid><orcidid>https://orcid.org/0000-0001-8217-8635</orcidid><orcidid>https://orcid.org/0000-0002-6656-850X</orcidid><orcidid>https://orcid.org/0000-0002-7109-1400</orcidid></search><sort><creationdate>202104</creationdate><title>Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling</title><author>Collet, Anatole ; Serghei, Anatoli ; Lhost, Olivier ; Trolez, Yves ; Cassagnau, Philippe ; Fulchiron, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6101-9e57d22d091cf1a3e0374f87c379254daba4db058aca09a1e1ff2e10a2e421d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>conducting polymers</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Engineering models</topic><topic>Engineering Sciences</topic><topic>Evolution</topic><topic>Fillers</topic><topic>Kinetic equations</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>melt</topic><topic>modeling</topic><topic>nanocomposites</topic><topic>Nanotubes</topic><topic>Percolation</topic><topic>Physics</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Rheology</topic><topic>shear</topic><topic>Shear deformation</topic><topic>Shear flow</topic><topic>Shear forces</topic><topic>Shear rate</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collet, Anatole</creatorcontrib><creatorcontrib>Serghei, Anatoli</creatorcontrib><creatorcontrib>Lhost, Olivier</creatorcontrib><creatorcontrib>Trolez, Yves</creatorcontrib><creatorcontrib>Cassagnau, Philippe</creatorcontrib><creatorcontrib>Fulchiron, René</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collet, Anatole</au><au>Serghei, Anatoli</au><au>Lhost, Olivier</au><au>Trolez, Yves</au><au>Cassagnau, Philippe</au><au>Fulchiron, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling</atitle><jtitle>Polymer engineering and science</jtitle><date>2021-04</date><risdate>2021</risdate><volume>61</volume><issue>4</issue><spage>1129</spage><epage>1138</epage><pages>1129-1138</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>This work aims to describe the conductivity evolution of polymer composites (polyethylene filled with carbon nanotubes) during a shearing deformation. Rheo‐electric measurements were carried out to observe the shear‐induced fillers network modification. Extended steady shear forces the conductivity to evolve asymptotically to a steady level attesting to an equilibrium between structuring and break up mechanisms in the melted polymer. Numerous experiments were conducted to cover a wide range of shear rate from 0.05 to 10 s−1 and for carbon nanotubes concentrations between 1.3 and 2.9 vol%. A model is proposed to predict the conductivity evolution under shear deformation using a simple kinetic equation inserted in a percolation law. Structuring parameter was found to be solely dependent on the temperature whereas shear induced modification terms were found to be mostly driven by the shear rate and the fillers content.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25651</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7714-9298</orcidid><orcidid>https://orcid.org/0000-0001-8217-8635</orcidid><orcidid>https://orcid.org/0000-0002-6656-850X</orcidid><orcidid>https://orcid.org/0000-0002-7109-1400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2021-04, Vol.61 (4), p.1129-1138 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03446361v1 |
source | Wiley Online Library All Journals |
subjects | Analysis Carbon Carbon nanotubes conducting polymers Electric properties Electrical conductivity Electrical resistivity Engineering models Engineering Sciences Evolution Fillers Kinetic equations Materials Mechanical properties melt modeling nanocomposites Nanotubes Percolation Physics Polyethylene Polyethylenes Polymer matrix composites Polymers Rheology shear Shear deformation Shear flow Shear forces Shear rate Temperature dependence |
title | Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20conductivity%20under%20shear%20flow%20of%20molten%20polyethylene%20filled%20with%20carbon%20nanotubes:%20Experimental%20and%20modeling&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Collet,%20Anatole&rft.date=2021-04&rft.volume=61&rft.issue=4&rft.spage=1129&rft.epage=1138&rft.pages=1129-1138&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25651&rft_dat=%3Cgale_hal_p%3EA662343591%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509721502&rft_id=info:pmid/&rft_galeid=A662343591&rfr_iscdi=true |