Engineering of Droplet Charges in Microfluidic Chips

Droplet‐based technologies, which utilize the surface charge characterization of droplets, are used in fluorescence‐activated cell sorting and energy harvesting. Herein, the influence of droplet charges on microchips is investigated via surface engineering. An electrical field is applied to deflect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2020-04, Vol.22 (4), p.n/a
Hauptverfasser: He, Rongxiang, Ruan, Meilin, Qi, Yuyang, Liu, Hongni, Zhang, Zhengtao, Chen, Chaohui, Chao, Yiping, Liu, Yumin, Chen, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced engineering materials
container_volume 22
creator He, Rongxiang
Ruan, Meilin
Qi, Yuyang
Liu, Hongni
Zhang, Zhengtao
Chen, Chaohui
Chao, Yiping
Liu, Yumin
Chen, Yong
description Droplet‐based technologies, which utilize the surface charge characterization of droplets, are used in fluorescence‐activated cell sorting and energy harvesting. Herein, the influence of droplet charges on microchips is investigated via surface engineering. An electrical field is applied to deflect the droplets in a microchannel, thereby enabling a qualitative analysis of the droplet charge. In a glass polydimethylsiloxane (PDMS)‐boned microchip, the droplet charge decreases when the microchannel is changed from a single‐sided to a three‐sided rectangular microstructure. When the ionic concentration of the droplet increases from 1 μm to 10 mm, droplet charges decrease by ≈78%. Meanwhile, a Au film is patterned in the microchannel, and 11‐aminoundecanethiol hydrochloride (AUT) and 12‐mercaptododecanoic acid (MDA) are modified to modulate the Au surface characterization. Compared with the glass–PDMS‐bonded microchannel, the Au film can suppress the streaming potential to decrease the droplet charges. After modification with MDA and AUT, the droplet charges increase. Therefore, the microchannel structures, ionic concentration, and substrate surface properties can be utilized to modulate the droplet charges, which can be widely used in droplet‐based energy harvesting and biological and chemical sample sorting. In this study, surface engineering in microfluidic chips is used to modulate droplet charges. After changing the microchannel structures and surface characterization, droplet charges change responsively. Droplets with high ionic concentration have low charges. This study provides a powerful tool for droplet‐based cell sorting or energy harvesting.
doi_str_mv 10.1002/adem.201901521
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03442107v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM201901521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4001-6c3340013d6cb4be3bbf7eae97e00fa5597e96eb5f5734960bc6fd2c0543253e3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMmdlSDl_phmrNrRIrVhgthzn3BqlSWXzof73OCoqI9N7Or3f3ekRck9hQgHYo2lwP2FAS6CS0QsySlLkTInpZfKCT3OqpLomNzG-A1AKlI-IqLqt7xCD77ZZ77JF6A8tfmTznQlbjJnvso23oXftp2-8TXN_iLfkypk24t2vjsnbU_U6X-Xrl-XzfLbOrUgHcmU5HwxvlK1FjbyuXYEGywIBnJEymVJhLZ0suCgV1Fa5hlmQgjPJkY_Jw2nvzrT6EPzehKPujder2VoPM-BCMArFF03ZySmbno0xoDsDFPTQjx760ed-ElCegG_f4vGftJ4tqs0f-wM1emfM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering of Droplet Charges in Microfluidic Chips</title><source>Wiley Journals</source><creator>He, Rongxiang ; Ruan, Meilin ; Qi, Yuyang ; Liu, Hongni ; Zhang, Zhengtao ; Chen, Chaohui ; Chao, Yiping ; Liu, Yumin ; Chen, Yong</creator><creatorcontrib>He, Rongxiang ; Ruan, Meilin ; Qi, Yuyang ; Liu, Hongni ; Zhang, Zhengtao ; Chen, Chaohui ; Chao, Yiping ; Liu, Yumin ; Chen, Yong</creatorcontrib><description>Droplet‐based technologies, which utilize the surface charge characterization of droplets, are used in fluorescence‐activated cell sorting and energy harvesting. Herein, the influence of droplet charges on microchips is investigated via surface engineering. An electrical field is applied to deflect the droplets in a microchannel, thereby enabling a qualitative analysis of the droplet charge. In a glass polydimethylsiloxane (PDMS)‐boned microchip, the droplet charge decreases when the microchannel is changed from a single‐sided to a three‐sided rectangular microstructure. When the ionic concentration of the droplet increases from 1 μm to 10 mm, droplet charges decrease by ≈78%. Meanwhile, a Au film is patterned in the microchannel, and 11‐aminoundecanethiol hydrochloride (AUT) and 12‐mercaptododecanoic acid (MDA) are modified to modulate the Au surface characterization. Compared with the glass–PDMS‐bonded microchannel, the Au film can suppress the streaming potential to decrease the droplet charges. After modification with MDA and AUT, the droplet charges increase. Therefore, the microchannel structures, ionic concentration, and substrate surface properties can be utilized to modulate the droplet charges, which can be widely used in droplet‐based energy harvesting and biological and chemical sample sorting. In this study, surface engineering in microfluidic chips is used to modulate droplet charges. After changing the microchannel structures and surface characterization, droplet charges change responsively. Droplets with high ionic concentration have low charges. This study provides a powerful tool for droplet‐based cell sorting or energy harvesting.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.201901521</identifier><language>eng</language><publisher>Wiley</publisher><subject>droplets ; electric double layers ; Engineering Sciences ; microfluidics ; surface modification</subject><ispartof>Advanced engineering materials, 2020-04, Vol.22 (4), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4001-6c3340013d6cb4be3bbf7eae97e00fa5597e96eb5f5734960bc6fd2c0543253e3</citedby><cites>FETCH-LOGICAL-c4001-6c3340013d6cb4be3bbf7eae97e00fa5597e96eb5f5734960bc6fd2c0543253e3</cites><orcidid>0000-0002-3937-0661 ; 0000-0002-2903-8753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.201901521$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.201901521$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03442107$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Rongxiang</creatorcontrib><creatorcontrib>Ruan, Meilin</creatorcontrib><creatorcontrib>Qi, Yuyang</creatorcontrib><creatorcontrib>Liu, Hongni</creatorcontrib><creatorcontrib>Zhang, Zhengtao</creatorcontrib><creatorcontrib>Chen, Chaohui</creatorcontrib><creatorcontrib>Chao, Yiping</creatorcontrib><creatorcontrib>Liu, Yumin</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><title>Engineering of Droplet Charges in Microfluidic Chips</title><title>Advanced engineering materials</title><description>Droplet‐based technologies, which utilize the surface charge characterization of droplets, are used in fluorescence‐activated cell sorting and energy harvesting. Herein, the influence of droplet charges on microchips is investigated via surface engineering. An electrical field is applied to deflect the droplets in a microchannel, thereby enabling a qualitative analysis of the droplet charge. In a glass polydimethylsiloxane (PDMS)‐boned microchip, the droplet charge decreases when the microchannel is changed from a single‐sided to a three‐sided rectangular microstructure. When the ionic concentration of the droplet increases from 1 μm to 10 mm, droplet charges decrease by ≈78%. Meanwhile, a Au film is patterned in the microchannel, and 11‐aminoundecanethiol hydrochloride (AUT) and 12‐mercaptododecanoic acid (MDA) are modified to modulate the Au surface characterization. Compared with the glass–PDMS‐bonded microchannel, the Au film can suppress the streaming potential to decrease the droplet charges. After modification with MDA and AUT, the droplet charges increase. Therefore, the microchannel structures, ionic concentration, and substrate surface properties can be utilized to modulate the droplet charges, which can be widely used in droplet‐based energy harvesting and biological and chemical sample sorting. In this study, surface engineering in microfluidic chips is used to modulate droplet charges. After changing the microchannel structures and surface characterization, droplet charges change responsively. Droplets with high ionic concentration have low charges. This study provides a powerful tool for droplet‐based cell sorting or energy harvesting.</description><subject>droplets</subject><subject>electric double layers</subject><subject>Engineering Sciences</subject><subject>microfluidics</subject><subject>surface modification</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwMmdlSDl_phmrNrRIrVhgthzn3BqlSWXzof73OCoqI9N7Or3f3ekRck9hQgHYo2lwP2FAS6CS0QsySlLkTInpZfKCT3OqpLomNzG-A1AKlI-IqLqt7xCD77ZZ77JF6A8tfmTznQlbjJnvso23oXftp2-8TXN_iLfkypk24t2vjsnbU_U6X-Xrl-XzfLbOrUgHcmU5HwxvlK1FjbyuXYEGywIBnJEymVJhLZ0suCgV1Fa5hlmQgjPJkY_Jw2nvzrT6EPzehKPujder2VoPM-BCMArFF03ZySmbno0xoDsDFPTQjx760ed-ElCegG_f4vGftJ4tqs0f-wM1emfM</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>He, Rongxiang</creator><creator>Ruan, Meilin</creator><creator>Qi, Yuyang</creator><creator>Liu, Hongni</creator><creator>Zhang, Zhengtao</creator><creator>Chen, Chaohui</creator><creator>Chao, Yiping</creator><creator>Liu, Yumin</creator><creator>Chen, Yong</creator><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3937-0661</orcidid><orcidid>https://orcid.org/0000-0002-2903-8753</orcidid></search><sort><creationdate>202004</creationdate><title>Engineering of Droplet Charges in Microfluidic Chips</title><author>He, Rongxiang ; Ruan, Meilin ; Qi, Yuyang ; Liu, Hongni ; Zhang, Zhengtao ; Chen, Chaohui ; Chao, Yiping ; Liu, Yumin ; Chen, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4001-6c3340013d6cb4be3bbf7eae97e00fa5597e96eb5f5734960bc6fd2c0543253e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>droplets</topic><topic>electric double layers</topic><topic>Engineering Sciences</topic><topic>microfluidics</topic><topic>surface modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Rongxiang</creatorcontrib><creatorcontrib>Ruan, Meilin</creatorcontrib><creatorcontrib>Qi, Yuyang</creatorcontrib><creatorcontrib>Liu, Hongni</creatorcontrib><creatorcontrib>Zhang, Zhengtao</creatorcontrib><creatorcontrib>Chen, Chaohui</creatorcontrib><creatorcontrib>Chao, Yiping</creatorcontrib><creatorcontrib>Liu, Yumin</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Rongxiang</au><au>Ruan, Meilin</au><au>Qi, Yuyang</au><au>Liu, Hongni</au><au>Zhang, Zhengtao</au><au>Chen, Chaohui</au><au>Chao, Yiping</au><au>Liu, Yumin</au><au>Chen, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of Droplet Charges in Microfluidic Chips</atitle><jtitle>Advanced engineering materials</jtitle><date>2020-04</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><epage>n/a</epage><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Droplet‐based technologies, which utilize the surface charge characterization of droplets, are used in fluorescence‐activated cell sorting and energy harvesting. Herein, the influence of droplet charges on microchips is investigated via surface engineering. An electrical field is applied to deflect the droplets in a microchannel, thereby enabling a qualitative analysis of the droplet charge. In a glass polydimethylsiloxane (PDMS)‐boned microchip, the droplet charge decreases when the microchannel is changed from a single‐sided to a three‐sided rectangular microstructure. When the ionic concentration of the droplet increases from 1 μm to 10 mm, droplet charges decrease by ≈78%. Meanwhile, a Au film is patterned in the microchannel, and 11‐aminoundecanethiol hydrochloride (AUT) and 12‐mercaptododecanoic acid (MDA) are modified to modulate the Au surface characterization. Compared with the glass–PDMS‐bonded microchannel, the Au film can suppress the streaming potential to decrease the droplet charges. After modification with MDA and AUT, the droplet charges increase. Therefore, the microchannel structures, ionic concentration, and substrate surface properties can be utilized to modulate the droplet charges, which can be widely used in droplet‐based energy harvesting and biological and chemical sample sorting. In this study, surface engineering in microfluidic chips is used to modulate droplet charges. After changing the microchannel structures and surface characterization, droplet charges change responsively. Droplets with high ionic concentration have low charges. This study provides a powerful tool for droplet‐based cell sorting or energy harvesting.</abstract><pub>Wiley</pub><doi>10.1002/adem.201901521</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3937-0661</orcidid><orcidid>https://orcid.org/0000-0002-2903-8753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2020-04, Vol.22 (4), p.n/a
issn 1438-1656
1527-2648
language eng
recordid cdi_hal_primary_oai_HAL_hal_03442107v1
source Wiley Journals
subjects droplets
electric double layers
Engineering Sciences
microfluidics
surface modification
title Engineering of Droplet Charges in Microfluidic Chips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20Droplet%20Charges%20in%20Microfluidic%20Chips&rft.jtitle=Advanced%20engineering%20materials&rft.au=He,%20Rongxiang&rft.date=2020-04&rft.volume=22&rft.issue=4&rft.epage=n/a&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.201901521&rft_dat=%3Cwiley_hal_p%3EADEM201901521%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true