All-optical coherent pulse compression for dynamic laser ranging using an acousto-optic dual comb

We demonstrate a new and simple dynamic laser ranging platform based on analog all-optical coherent pulse compression of modulated optical waveforms. The technique employs a bidirectional acousto-optic frequency shifting loop, which provides a dual-comb photonic signal with an optical bandwidth in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-07, Vol.29 (14), p.21369-21385
Hauptverfasser: Billault, Vincent, Durán, Vicente, Fernández-Pousa, Carlos R., Crozatier, Vincent, Dolfi, Daniel, de Chatellus, Hugues Guillet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a new and simple dynamic laser ranging platform based on analog all-optical coherent pulse compression of modulated optical waveforms. The technique employs a bidirectional acousto-optic frequency shifting loop, which provides a dual-comb photonic signal with an optical bandwidth in the microwave range. This architecture simply involves a CW laser, standard telecom components and low frequency electronics, both for the dual-comb generation and for the detection. As a laser ranging system, it offers a range resolution of a few millimeters, set by a dual-comb spectral bandwidth of 24 GHz, and a precision of 20 µm for an integration time of 20 ms. The system is also shown to provide dynamic measurements at scanning rates in the acoustic range, including phase-sensitive measurements and Doppler shift velocimetry. In addition, we show that the application of perfect correlation phase sequences to the transmitted waveforms allows the ambiguity range to be extended by a factor of 10 up to ∼20 m. The system generates quasi-continuous waveforms with low peak power, which makes it possible to envision long-range telemetry or reflectometry requiring highly amplified signals.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.430998