Finite Difference formulation of any lattice Boltzmann scheme

Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2022-09, Vol.152 (1), p.1-40
Hauptverfasser: Bellotti, Thomas, Graille, Benjamin, Massot, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 1
container_start_page 1
container_title Numerische Mathematik
container_volume 152
creator Bellotti, Thomas
Graille, Benjamin
Massot, Marc
description Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.
doi_str_mv 10.1007/s00211-022-01302-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03436896v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707400287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a39c2a63066d9e6d793f9d83c87d3bbd4beaef5342dfb346b6747da33eeba45d3</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yRmBgCL36OHQ8MpVCKVIkFJDbLiW2aKk2KnSKVr8clCDYmP9vnXj0dQs4zuMoAxHUAoFmWAqUpZAg0pQdkBJLlKVKWH8YZqExzKV-PyUkIK4BMcJaNyM2sbuveJne1c9bbtrKJ6_x62-i-7tqkc4lud0m89XX8uu2a_nOt2zYJ1dKu7Sk5croJ9uznHJOX2f3zdJ4unh4ep5NFWqEUfapRVlRzBM6NtNwIiU6aAqtCGCxLw0qrrcuRUeNKZLzkggmjEa0tNcsNjsnl0LvUjdr4eq39TnW6VvPJQu3fABnyQvIPjOzFwG589761oVerbuvbuJ6iAgSLJgoRKTpQle9C8Nb91mag9krVoFRFpepbqaIxhEMoRLh9s_6v-p_UF-01eFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707400287</pqid></control><display><type>article</type><title>Finite Difference formulation of any lattice Boltzmann scheme</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bellotti, Thomas ; Graille, Benjamin ; Massot, Marc</creator><creatorcontrib>Bellotti, Thomas ; Graille, Benjamin ; Massot, Marc</creatorcontrib><description>Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-022-01302-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer Science ; Consistency ; Finite difference method ; Flow control ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Operators (mathematics) ; Polynomials ; Simulation ; Stability analysis ; Theoretical</subject><ispartof>Numerische Mathematik, 2022-09, Vol.152 (1), p.1-40</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a39c2a63066d9e6d793f9d83c87d3bbd4beaef5342dfb346b6747da33eeba45d3</citedby><cites>FETCH-LOGICAL-c397t-a39c2a63066d9e6d793f9d83c87d3bbd4beaef5342dfb346b6747da33eeba45d3</cites><orcidid>0000-0002-4139-075X ; 0000-0001-8823-7667 ; 0000-0002-6287-2627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-022-01302-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-022-01302-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03436896$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellotti, Thomas</creatorcontrib><creatorcontrib>Graille, Benjamin</creatorcontrib><creatorcontrib>Massot, Marc</creatorcontrib><title>Finite Difference formulation of any lattice Boltzmann scheme</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.</description><subject>Computer Science</subject><subject>Consistency</subject><subject>Finite difference method</subject><subject>Flow control</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwA0yRmBgCL36OHQ8MpVCKVIkFJDbLiW2aKk2KnSKVr8clCDYmP9vnXj0dQs4zuMoAxHUAoFmWAqUpZAg0pQdkBJLlKVKWH8YZqExzKV-PyUkIK4BMcJaNyM2sbuveJne1c9bbtrKJ6_x62-i-7tqkc4lud0m89XX8uu2a_nOt2zYJ1dKu7Sk5croJ9uznHJOX2f3zdJ4unh4ep5NFWqEUfapRVlRzBM6NtNwIiU6aAqtCGCxLw0qrrcuRUeNKZLzkggmjEa0tNcsNjsnl0LvUjdr4eq39TnW6VvPJQu3fABnyQvIPjOzFwG589761oVerbuvbuJ6iAgSLJgoRKTpQle9C8Nb91mag9krVoFRFpepbqaIxhEMoRLh9s_6v-p_UF-01eFs</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bellotti, Thomas</creator><creator>Graille, Benjamin</creator><creator>Massot, Marc</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4139-075X</orcidid><orcidid>https://orcid.org/0000-0001-8823-7667</orcidid><orcidid>https://orcid.org/0000-0002-6287-2627</orcidid></search><sort><creationdate>20220901</creationdate><title>Finite Difference formulation of any lattice Boltzmann scheme</title><author>Bellotti, Thomas ; Graille, Benjamin ; Massot, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a39c2a63066d9e6d793f9d83c87d3bbd4beaef5342dfb346b6747da33eeba45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Consistency</topic><topic>Finite difference method</topic><topic>Flow control</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellotti, Thomas</creatorcontrib><creatorcontrib>Graille, Benjamin</creatorcontrib><creatorcontrib>Massot, Marc</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellotti, Thomas</au><au>Graille, Benjamin</au><au>Massot, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Difference formulation of any lattice Boltzmann scheme</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>152</volume><issue>1</issue><spage>1</spage><epage>40</epage><pages>1-40</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-022-01302-2</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-4139-075X</orcidid><orcidid>https://orcid.org/0000-0001-8823-7667</orcidid><orcidid>https://orcid.org/0000-0002-6287-2627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2022-09, Vol.152 (1), p.1-40
issn 0029-599X
0945-3245
language eng
recordid cdi_hal_primary_oai_HAL_hal_03436896v3
source SpringerLink Journals - AutoHoldings
subjects Computer Science
Consistency
Finite difference method
Flow control
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Operators (mathematics)
Polynomials
Simulation
Stability analysis
Theoretical
title Finite Difference formulation of any lattice Boltzmann scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Difference%20formulation%20of%20any%20lattice%20Boltzmann%20scheme&rft.jtitle=Numerische%20Mathematik&rft.au=Bellotti,%20Thomas&rft.date=2022-09-01&rft.volume=152&rft.issue=1&rft.spage=1&rft.epage=40&rft.pages=1-40&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-022-01302-2&rft_dat=%3Cproquest_hal_p%3E2707400287%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707400287&rft_id=info:pmid/&rfr_iscdi=true