Finite Difference formulation of any lattice Boltzmann scheme
Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is n...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2022-09, Vol.152 (1), p.1-40 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Numerische Mathematik |
container_volume | 152 |
creator | Bellotti, Thomas Graille, Benjamin Massot, Marc |
description | Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations. |
doi_str_mv | 10.1007/s00211-022-01302-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03436896v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707400287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a39c2a63066d9e6d793f9d83c87d3bbd4beaef5342dfb346b6747da33eeba45d3</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yRmBgCL36OHQ8MpVCKVIkFJDbLiW2aKk2KnSKVr8clCDYmP9vnXj0dQs4zuMoAxHUAoFmWAqUpZAg0pQdkBJLlKVKWH8YZqExzKV-PyUkIK4BMcJaNyM2sbuveJne1c9bbtrKJ6_x62-i-7tqkc4lud0m89XX8uu2a_nOt2zYJ1dKu7Sk5croJ9uznHJOX2f3zdJ4unh4ep5NFWqEUfapRVlRzBM6NtNwIiU6aAqtCGCxLw0qrrcuRUeNKZLzkggmjEa0tNcsNjsnl0LvUjdr4eq39TnW6VvPJQu3fABnyQvIPjOzFwG589761oVerbuvbuJ6iAgSLJgoRKTpQle9C8Nb91mag9krVoFRFpepbqaIxhEMoRLh9s_6v-p_UF-01eFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707400287</pqid></control><display><type>article</type><title>Finite Difference formulation of any lattice Boltzmann scheme</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bellotti, Thomas ; Graille, Benjamin ; Massot, Marc</creator><creatorcontrib>Bellotti, Thomas ; Graille, Benjamin ; Massot, Marc</creatorcontrib><description>Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-022-01302-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer Science ; Consistency ; Finite difference method ; Flow control ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Operators (mathematics) ; Polynomials ; Simulation ; Stability analysis ; Theoretical</subject><ispartof>Numerische Mathematik, 2022-09, Vol.152 (1), p.1-40</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a39c2a63066d9e6d793f9d83c87d3bbd4beaef5342dfb346b6747da33eeba45d3</citedby><cites>FETCH-LOGICAL-c397t-a39c2a63066d9e6d793f9d83c87d3bbd4beaef5342dfb346b6747da33eeba45d3</cites><orcidid>0000-0002-4139-075X ; 0000-0001-8823-7667 ; 0000-0002-6287-2627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-022-01302-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-022-01302-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03436896$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellotti, Thomas</creatorcontrib><creatorcontrib>Graille, Benjamin</creatorcontrib><creatorcontrib>Massot, Marc</creatorcontrib><title>Finite Difference formulation of any lattice Boltzmann scheme</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.</description><subject>Computer Science</subject><subject>Consistency</subject><subject>Finite difference method</subject><subject>Flow control</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwA0yRmBgCL36OHQ8MpVCKVIkFJDbLiW2aKk2KnSKVr8clCDYmP9vnXj0dQs4zuMoAxHUAoFmWAqUpZAg0pQdkBJLlKVKWH8YZqExzKV-PyUkIK4BMcJaNyM2sbuveJne1c9bbtrKJ6_x62-i-7tqkc4lud0m89XX8uu2a_nOt2zYJ1dKu7Sk5croJ9uznHJOX2f3zdJ4unh4ep5NFWqEUfapRVlRzBM6NtNwIiU6aAqtCGCxLw0qrrcuRUeNKZLzkggmjEa0tNcsNjsnl0LvUjdr4eq39TnW6VvPJQu3fABnyQvIPjOzFwG589761oVerbuvbuJ6iAgSLJgoRKTpQle9C8Nb91mag9krVoFRFpepbqaIxhEMoRLh9s_6v-p_UF-01eFs</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bellotti, Thomas</creator><creator>Graille, Benjamin</creator><creator>Massot, Marc</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4139-075X</orcidid><orcidid>https://orcid.org/0000-0001-8823-7667</orcidid><orcidid>https://orcid.org/0000-0002-6287-2627</orcidid></search><sort><creationdate>20220901</creationdate><title>Finite Difference formulation of any lattice Boltzmann scheme</title><author>Bellotti, Thomas ; Graille, Benjamin ; Massot, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a39c2a63066d9e6d793f9d83c87d3bbd4beaef5342dfb346b6747da33eeba45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Consistency</topic><topic>Finite difference method</topic><topic>Flow control</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellotti, Thomas</creatorcontrib><creatorcontrib>Graille, Benjamin</creatorcontrib><creatorcontrib>Massot, Marc</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellotti, Thomas</au><au>Graille, Benjamin</au><au>Massot, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Difference formulation of any lattice Boltzmann scheme</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>152</volume><issue>1</issue><spage>1</spage><epage>40</epage><pages>1-40</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-022-01302-2</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-4139-075X</orcidid><orcidid>https://orcid.org/0000-0001-8823-7667</orcidid><orcidid>https://orcid.org/0000-0002-6287-2627</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2022-09, Vol.152 (1), p.1-40 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03436896v3 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer Science Consistency Finite difference method Flow control Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Operators (mathematics) Polynomials Simulation Stability analysis Theoretical |
title | Finite Difference formulation of any lattice Boltzmann scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Difference%20formulation%20of%20any%20lattice%20Boltzmann%20scheme&rft.jtitle=Numerische%20Mathematik&rft.au=Bellotti,%20Thomas&rft.date=2022-09-01&rft.volume=152&rft.issue=1&rft.spage=1&rft.epage=40&rft.pages=1-40&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-022-01302-2&rft_dat=%3Cproquest_hal_p%3E2707400287%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707400287&rft_id=info:pmid/&rfr_iscdi=true |