Simulation of Eu3+ luminescence spectra of borosilicate glasses by molecular dynamics calculations
Simplified inactive rare-earths doped nuclear waste glasses have been obtained by molecular dynamics (MD) simulation in order to investigate the local structure around the rare-earth by luminescence studies. MD calculations were performed with modified Born–Mayer–Huggins potentials and three body an...
Gespeichert in:
Veröffentlicht in: | Optical materials 2008-07, Vol.30 (11), p.1689-1693 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1693 |
---|---|
container_issue | 11 |
container_start_page | 1689 |
container_title | Optical materials |
container_volume | 30 |
creator | DE BONFILS, J PANCZER, G DE LIGNY, D PEUGET, S DELAYE, J.-M CHAUSSEDENT, S MONTEIL, A CHAMPAGNON, B |
description | Simplified inactive rare-earths doped nuclear waste glasses have been obtained by molecular dynamics (MD) simulation in order to investigate the local structure around the rare-earth by luminescence studies. MD calculations were performed with modified Born–Mayer–Huggins potentials and three body angular terms representing Coulomb and covalent interactions. Atomic positions within the glasses are then determined. Simulations of luminescence spectra were then obtained by calculation of the ligand field parameters affecting each luminescent ion. Considering the C2v symmetry, it is possible to calculate the radiative transition probabilities between the emitter level, 5D0, and the splitted receptor levels, 7FJ (J = 0–3) for each Eu3+ ion. The simulated emission spectra are obtained by convolution of all the Eu3+ ions contributions. A comparison with the experimental data issue from fluorescence line narrowing and microluminescence spectroscopies allowed us not only to validate the simulation of luminescence spectra from simulated environments, but also to confirm the presence and the identification of two major Eu3+ sites distribution in the nuclear glasses thanks to spectra-structure correlations. |
doi_str_mv | 10.1016/j.optmat.2007.07.009 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03436301v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03436301v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c3074089289c7e92d99468480298aa3ef19167e307964b54520ee034c9cba6593</originalsourceid><addsrcrecordid>eNo9UE1Lw0AUXETBWv0HHvbiQSTx7Uc22WMpaoWCB_W8vGw3umXzQTYV-u9NSCkMPHhvZh4zhNwzSBkw9bxP226ocUg5QJ5OAH1BFqzIRcJ4xi_JAjTPEiFVfk1uYtwDAM-UWpDy09eHgINvG9pW9OUgnmg41L5x0brGOho7Z4cep2PZ9m30wVscHP0JGKOLtDzSug3OjiY93R0brL2N1GKwJ9t4S64qDNHdneaSfL--fK03yfbj7X292iaWazYkVkAuodC80DZ3mu-0lqqQBXBdIApXMc1U7kaWVrLMZMbBORDSaluiyrRYksfZ9xeD6XpfY380LXqzWW3NtBvJQglgf2zkyplrx0ixd9VZwMBMnZq9mTs1U6dmAkwvHmZZh3GMWPXYWB_PWg4y04Xg4h-K5Xkd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of Eu3+ luminescence spectra of borosilicate glasses by molecular dynamics calculations</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>DE BONFILS, J ; PANCZER, G ; DE LIGNY, D ; PEUGET, S ; DELAYE, J.-M ; CHAUSSEDENT, S ; MONTEIL, A ; CHAMPAGNON, B</creator><creatorcontrib>DE BONFILS, J ; PANCZER, G ; DE LIGNY, D ; PEUGET, S ; DELAYE, J.-M ; CHAUSSEDENT, S ; MONTEIL, A ; CHAMPAGNON, B</creatorcontrib><description>Simplified inactive rare-earths doped nuclear waste glasses have been obtained by molecular dynamics (MD) simulation in order to investigate the local structure around the rare-earth by luminescence studies. MD calculations were performed with modified Born–Mayer–Huggins potentials and three body angular terms representing Coulomb and covalent interactions. Atomic positions within the glasses are then determined. Simulations of luminescence spectra were then obtained by calculation of the ligand field parameters affecting each luminescent ion. Considering the C2v symmetry, it is possible to calculate the radiative transition probabilities between the emitter level, 5D0, and the splitted receptor levels, 7FJ (J = 0–3) for each Eu3+ ion. The simulated emission spectra are obtained by convolution of all the Eu3+ ions contributions. A comparison with the experimental data issue from fluorescence line narrowing and microluminescence spectroscopies allowed us not only to validate the simulation of luminescence spectra from simulated environments, but also to confirm the presence and the identification of two major Eu3+ sites distribution in the nuclear glasses thanks to spectra-structure correlations.</description><identifier>ISSN: 0925-3467</identifier><identifier>EISSN: 1873-1252</identifier><identifier>DOI: 10.1016/j.optmat.2007.07.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier Science</publisher><subject>Amorphous materials, glasses and other disordered solids ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron states ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Glasses, quartz ; Life Sciences ; Methods of electronic structure calculations ; Optical materials ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optics ; Photoluminescence ; Physics</subject><ispartof>Optical materials, 2008-07, Vol.30 (11), p.1689-1693</ispartof><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c3074089289c7e92d99468480298aa3ef19167e307964b54520ee034c9cba6593</citedby><cites>FETCH-LOGICAL-c291t-c3074089289c7e92d99468480298aa3ef19167e307964b54520ee034c9cba6593</cites><orcidid>0000-0001-5708-6376 ; 0000-0002-1311-642X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23921,23922,25131,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20459832$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-angers.hal.science/hal-03436301$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>DE BONFILS, J</creatorcontrib><creatorcontrib>PANCZER, G</creatorcontrib><creatorcontrib>DE LIGNY, D</creatorcontrib><creatorcontrib>PEUGET, S</creatorcontrib><creatorcontrib>DELAYE, J.-M</creatorcontrib><creatorcontrib>CHAUSSEDENT, S</creatorcontrib><creatorcontrib>MONTEIL, A</creatorcontrib><creatorcontrib>CHAMPAGNON, B</creatorcontrib><title>Simulation of Eu3+ luminescence spectra of borosilicate glasses by molecular dynamics calculations</title><title>Optical materials</title><description>Simplified inactive rare-earths doped nuclear waste glasses have been obtained by molecular dynamics (MD) simulation in order to investigate the local structure around the rare-earth by luminescence studies. MD calculations were performed with modified Born–Mayer–Huggins potentials and three body angular terms representing Coulomb and covalent interactions. Atomic positions within the glasses are then determined. Simulations of luminescence spectra were then obtained by calculation of the ligand field parameters affecting each luminescent ion. Considering the C2v symmetry, it is possible to calculate the radiative transition probabilities between the emitter level, 5D0, and the splitted receptor levels, 7FJ (J = 0–3) for each Eu3+ ion. The simulated emission spectra are obtained by convolution of all the Eu3+ ions contributions. A comparison with the experimental data issue from fluorescence line narrowing and microluminescence spectroscopies allowed us not only to validate the simulation of luminescence spectra from simulated environments, but also to confirm the presence and the identification of two major Eu3+ sites distribution in the nuclear glasses thanks to spectra-structure correlations.</description><subject>Amorphous materials, glasses and other disordered solids</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Glasses, quartz</subject><subject>Life Sciences</subject><subject>Methods of electronic structure calculations</subject><subject>Optical materials</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optics</subject><subject>Photoluminescence</subject><subject>Physics</subject><issn>0925-3467</issn><issn>1873-1252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9UE1Lw0AUXETBWv0HHvbiQSTx7Uc22WMpaoWCB_W8vGw3umXzQTYV-u9NSCkMPHhvZh4zhNwzSBkw9bxP226ocUg5QJ5OAH1BFqzIRcJ4xi_JAjTPEiFVfk1uYtwDAM-UWpDy09eHgINvG9pW9OUgnmg41L5x0brGOho7Z4cep2PZ9m30wVscHP0JGKOLtDzSug3OjiY93R0brL2N1GKwJ9t4S64qDNHdneaSfL--fK03yfbj7X292iaWazYkVkAuodC80DZ3mu-0lqqQBXBdIApXMc1U7kaWVrLMZMbBORDSaluiyrRYksfZ9xeD6XpfY380LXqzWW3NtBvJQglgf2zkyplrx0ixd9VZwMBMnZq9mTs1U6dmAkwvHmZZh3GMWPXYWB_PWg4y04Xg4h-K5Xkd</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>DE BONFILS, J</creator><creator>PANCZER, G</creator><creator>DE LIGNY, D</creator><creator>PEUGET, S</creator><creator>DELAYE, J.-M</creator><creator>CHAUSSEDENT, S</creator><creator>MONTEIL, A</creator><creator>CHAMPAGNON, B</creator><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5708-6376</orcidid><orcidid>https://orcid.org/0000-0002-1311-642X</orcidid></search><sort><creationdate>20080701</creationdate><title>Simulation of Eu3+ luminescence spectra of borosilicate glasses by molecular dynamics calculations</title><author>DE BONFILS, J ; PANCZER, G ; DE LIGNY, D ; PEUGET, S ; DELAYE, J.-M ; CHAUSSEDENT, S ; MONTEIL, A ; CHAMPAGNON, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c3074089289c7e92d99468480298aa3ef19167e307964b54520ee034c9cba6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amorphous materials, glasses and other disordered solids</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Glasses, quartz</topic><topic>Life Sciences</topic><topic>Methods of electronic structure calculations</topic><topic>Optical materials</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optics</topic><topic>Photoluminescence</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DE BONFILS, J</creatorcontrib><creatorcontrib>PANCZER, G</creatorcontrib><creatorcontrib>DE LIGNY, D</creatorcontrib><creatorcontrib>PEUGET, S</creatorcontrib><creatorcontrib>DELAYE, J.-M</creatorcontrib><creatorcontrib>CHAUSSEDENT, S</creatorcontrib><creatorcontrib>MONTEIL, A</creatorcontrib><creatorcontrib>CHAMPAGNON, B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DE BONFILS, J</au><au>PANCZER, G</au><au>DE LIGNY, D</au><au>PEUGET, S</au><au>DELAYE, J.-M</au><au>CHAUSSEDENT, S</au><au>MONTEIL, A</au><au>CHAMPAGNON, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Eu3+ luminescence spectra of borosilicate glasses by molecular dynamics calculations</atitle><jtitle>Optical materials</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>30</volume><issue>11</issue><spage>1689</spage><epage>1693</epage><pages>1689-1693</pages><issn>0925-3467</issn><eissn>1873-1252</eissn><abstract>Simplified inactive rare-earths doped nuclear waste glasses have been obtained by molecular dynamics (MD) simulation in order to investigate the local structure around the rare-earth by luminescence studies. MD calculations were performed with modified Born–Mayer–Huggins potentials and three body angular terms representing Coulomb and covalent interactions. Atomic positions within the glasses are then determined. Simulations of luminescence spectra were then obtained by calculation of the ligand field parameters affecting each luminescent ion. Considering the C2v symmetry, it is possible to calculate the radiative transition probabilities between the emitter level, 5D0, and the splitted receptor levels, 7FJ (J = 0–3) for each Eu3+ ion. The simulated emission spectra are obtained by convolution of all the Eu3+ ions contributions. A comparison with the experimental data issue from fluorescence line narrowing and microluminescence spectroscopies allowed us not only to validate the simulation of luminescence spectra from simulated environments, but also to confirm the presence and the identification of two major Eu3+ sites distribution in the nuclear glasses thanks to spectra-structure correlations.</abstract><cop>Amsterdam</cop><pub>Elsevier Science</pub><doi>10.1016/j.optmat.2007.07.009</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5708-6376</orcidid><orcidid>https://orcid.org/0000-0002-1311-642X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-3467 |
ispartof | Optical materials, 2008-07, Vol.30 (11), p.1689-1693 |
issn | 0925-3467 1873-1252 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03436301v1 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Amorphous materials, glasses and other disordered solids Condensed matter: electronic structure, electrical, magnetic, and optical properties Electron states Exact sciences and technology Fundamental areas of phenomenology (including applications) Glasses, quartz Life Sciences Methods of electronic structure calculations Optical materials Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optics Photoluminescence Physics |
title | Simulation of Eu3+ luminescence spectra of borosilicate glasses by molecular dynamics calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Eu3+%20luminescence%20spectra%20of%20borosilicate%20glasses%20by%20molecular%20dynamics%20calculations&rft.jtitle=Optical%20materials&rft.au=DE%20BONFILS,%20J&rft.date=2008-07-01&rft.volume=30&rft.issue=11&rft.spage=1689&rft.epage=1693&rft.pages=1689-1693&rft.issn=0925-3467&rft.eissn=1873-1252&rft_id=info:doi/10.1016/j.optmat.2007.07.009&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03436301v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |