Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification
Szego's (1984) theorem states that the asymptotic behavior of the eigenvalues of a Hermitian Toeplitz matrix is linked to the Fourier transform of its entries. This result was later extended to block Toeplitz matrices, i.e., covariance matrices of multivariate stationary processes. The present...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2001-03, Vol.47 (3), p.1243-1251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1251 |
---|---|
container_issue | 3 |
container_start_page | 1243 |
container_title | IEEE transactions on information theory |
container_volume | 47 |
creator | Gazzah, H. Regalia, P.A. Delmas, J.-P. |
description | Szego's (1984) theorem states that the asymptotic behavior of the eigenvalues of a Hermitian Toeplitz matrix is linked to the Fourier transform of its entries. This result was later extended to block Toeplitz matrices, i.e., covariance matrices of multivariate stationary processes. The present work gives a new proof of Szego's theorem applied to block Toeplitz matrices. We focus on a particular class of Toeplitz matrices, those corresponding to covariance matrices of single-input multiple-output (SIMO) channels. They satisfy some factorization properties that lead to a simpler form of Szego's theorem and allow one to deduce results on the asymptotic behavior of the lowest nonzero eigenvalue for which an upper bound is developed and expressed in terms of the subchannels frequency responses. This bound is interpreted in the context of blind channel identification using second-order algorithms, and more particularly in the case of band-limited channels. |
doi_str_mv | 10.1109/18.915697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03435709v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>915697</ieee_id><sourcerecordid>914655212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fb0f38ec0dcdaf23d4c4242348eab6432fe80287190b85405f65bb5539b4bd3c3</originalsourceid><addsrcrecordid>eNp90c9LHDEUB_AgFrraHnr1FHqo9DA2P2eS4yJahS0eas8hybxodHYynWQE-9c3dhcLPfQU8n2fhPd4CH2g5IxSor9QdaapbHV3gFZUyq7RrRSHaEUIVY0WQr1FRzk_1KuQlK3QvM7P26mkEj2GeAfjkx0WwH3MZY5uKTGNOAXshuQf8W2CaYjlF97aWvWQsR17bKcaevuHllRprOH362832N_bcYQBxx7GEsMevUNvgh0yvN-fx-jH5cXt-VWzufl6fb7eNF4QWZrgSOAKPOl9bwPjvfCCCcaFAutawVkARZjqqCZOyfoktNI5Kbl2wvXc82P0effvvR3MNMetnZ9NstFcrTfmJSNccNkR_USrPd3ZaU4_F8jFbGP2MAx2hLRko6lopWSUVfnpv5KptuW0VRV-_Ac-pGUe68SGaqk6JpX426OfU84zhNdGKTEvCzVUmd1Cqz3Z2QgAr25f_A0ttpsc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195872584</pqid></control><display><type>article</type><title>Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification</title><source>IEEE Electronic Library (IEL)</source><creator>Gazzah, H. ; Regalia, P.A. ; Delmas, J.-P.</creator><creatorcontrib>Gazzah, H. ; Regalia, P.A. ; Delmas, J.-P.</creatorcontrib><description>Szego's (1984) theorem states that the asymptotic behavior of the eigenvalues of a Hermitian Toeplitz matrix is linked to the Fourier transform of its entries. This result was later extended to block Toeplitz matrices, i.e., covariance matrices of multivariate stationary processes. The present work gives a new proof of Szego's theorem applied to block Toeplitz matrices. We focus on a particular class of Toeplitz matrices, those corresponding to covariance matrices of single-input multiple-output (SIMO) channels. They satisfy some factorization properties that lead to a simpler form of Szego's theorem and allow one to deduce results on the asymptotic behavior of the lowest nonzero eigenvalue for which an upper bound is developed and expressed in terms of the subchannels frequency responses. This bound is interpreted in the context of blind channel identification using second-order algorithms, and more particularly in the case of band-limited channels.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.915697</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asymptotic properties ; Blocking ; Channels ; Computer Science ; Eigenvalues ; Information technology ; Mathematical analysis ; Mathematics ; Matrices ; Matrix methods ; Signal and Image Processing ; Statistics ; Statistics Theory ; Theorems ; Toeplitz matrices</subject><ispartof>IEEE transactions on information theory, 2001-03, Vol.47 (3), p.1243-1251</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2001</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fb0f38ec0dcdaf23d4c4242348eab6432fe80287190b85405f65bb5539b4bd3c3</citedby><cites>FETCH-LOGICAL-c405t-fb0f38ec0dcdaf23d4c4242348eab6432fe80287190b85405f65bb5539b4bd3c3</cites><orcidid>0000-0003-3137-6134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/915697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/915697$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03435709$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gazzah, H.</creatorcontrib><creatorcontrib>Regalia, P.A.</creatorcontrib><creatorcontrib>Delmas, J.-P.</creatorcontrib><title>Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Szego's (1984) theorem states that the asymptotic behavior of the eigenvalues of a Hermitian Toeplitz matrix is linked to the Fourier transform of its entries. This result was later extended to block Toeplitz matrices, i.e., covariance matrices of multivariate stationary processes. The present work gives a new proof of Szego's theorem applied to block Toeplitz matrices. We focus on a particular class of Toeplitz matrices, those corresponding to covariance matrices of single-input multiple-output (SIMO) channels. They satisfy some factorization properties that lead to a simpler form of Szego's theorem and allow one to deduce results on the asymptotic behavior of the lowest nonzero eigenvalue for which an upper bound is developed and expressed in terms of the subchannels frequency responses. This bound is interpreted in the context of blind channel identification using second-order algorithms, and more particularly in the case of band-limited channels.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Blocking</subject><subject>Channels</subject><subject>Computer Science</subject><subject>Eigenvalues</subject><subject>Information technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Signal and Image Processing</subject><subject>Statistics</subject><subject>Statistics Theory</subject><subject>Theorems</subject><subject>Toeplitz matrices</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90c9LHDEUB_AgFrraHnr1FHqo9DA2P2eS4yJahS0eas8hybxodHYynWQE-9c3dhcLPfQU8n2fhPd4CH2g5IxSor9QdaapbHV3gFZUyq7RrRSHaEUIVY0WQr1FRzk_1KuQlK3QvM7P26mkEj2GeAfjkx0WwH3MZY5uKTGNOAXshuQf8W2CaYjlF97aWvWQsR17bKcaevuHllRprOH362832N_bcYQBxx7GEsMevUNvgh0yvN-fx-jH5cXt-VWzufl6fb7eNF4QWZrgSOAKPOl9bwPjvfCCCcaFAutawVkARZjqqCZOyfoktNI5Kbl2wvXc82P0effvvR3MNMetnZ9NstFcrTfmJSNccNkR_USrPd3ZaU4_F8jFbGP2MAx2hLRko6lopWSUVfnpv5KptuW0VRV-_Ac-pGUe68SGaqk6JpX426OfU84zhNdGKTEvCzVUmd1Cqz3Z2QgAr25f_A0ttpsc</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Gazzah, H.</creator><creator>Regalia, P.A.</creator><creator>Delmas, J.-P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3137-6134</orcidid></search><sort><creationdate>20010301</creationdate><title>Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification</title><author>Gazzah, H. ; Regalia, P.A. ; Delmas, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fb0f38ec0dcdaf23d4c4242348eab6432fe80287190b85405f65bb5539b4bd3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Blocking</topic><topic>Channels</topic><topic>Computer Science</topic><topic>Eigenvalues</topic><topic>Information technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Signal and Image Processing</topic><topic>Statistics</topic><topic>Statistics Theory</topic><topic>Theorems</topic><topic>Toeplitz matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gazzah, H.</creatorcontrib><creatorcontrib>Regalia, P.A.</creatorcontrib><creatorcontrib>Delmas, J.-P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gazzah, H.</au><au>Regalia, P.A.</au><au>Delmas, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2001-03-01</date><risdate>2001</risdate><volume>47</volume><issue>3</issue><spage>1243</spage><epage>1251</epage><pages>1243-1251</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Szego's (1984) theorem states that the asymptotic behavior of the eigenvalues of a Hermitian Toeplitz matrix is linked to the Fourier transform of its entries. This result was later extended to block Toeplitz matrices, i.e., covariance matrices of multivariate stationary processes. The present work gives a new proof of Szego's theorem applied to block Toeplitz matrices. We focus on a particular class of Toeplitz matrices, those corresponding to covariance matrices of single-input multiple-output (SIMO) channels. They satisfy some factorization properties that lead to a simpler form of Szego's theorem and allow one to deduce results on the asymptotic behavior of the lowest nonzero eigenvalue for which an upper bound is developed and expressed in terms of the subchannels frequency responses. This bound is interpreted in the context of blind channel identification using second-order algorithms, and more particularly in the case of band-limited channels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.915697</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3137-6134</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2001-03, Vol.47 (3), p.1243-1251 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03435709v1 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Asymptotic properties Blocking Channels Computer Science Eigenvalues Information technology Mathematical analysis Mathematics Matrices Matrix methods Signal and Image Processing Statistics Statistics Theory Theorems Toeplitz matrices |
title | Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20eigenvalue%20distribution%20of%20block%20Toeplitz%20matrices%20and%20application%20to%20blind%20SIMO%20channel%20identification&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gazzah,%20H.&rft.date=2001-03-01&rft.volume=47&rft.issue=3&rft.spage=1243&rft.epage=1251&rft.pages=1243-1251&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.915697&rft_dat=%3Cproquest_RIE%3E914655212%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195872584&rft_id=info:pmid/&rft_ieee_id=915697&rfr_iscdi=true |