Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding
Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and huma...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2021-09, Vol.109 (18), p.2847-2863.e11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2863.e11 |
---|---|
container_issue | 18 |
container_start_page | 2847 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 109 |
creator | Han, Sisu Okawa, Satoshi Wilkinson, Grey Atteridge Ghazale, Hussein Adnani, Lata Dixit, Rajiv Tavares, Ligia Faisal, Imrul Brooks, Matthew J. Cortay, Veronique Zinyk, Dawn Sivitilli, Adam Li, Saiqun Malik, Faizan Ilnytskyy, Yaroslav Angarica, Vladimir Espinosa Gao, Jinghua Chinchalongporn, Vorapin Oproescu, Ana-Maria Vasan, Lakshmy Touahri, Yacine David, Luke Ajay Raharjo, Eko Kim, Jung-Woong Wu, Wei Rahmani, Waleed Chan, Jennifer Ai-wen Kovalchuk, Igor Attisano, Liliana Kurrasch, Deborah Dehay, Colette Swaroop, Anand Castro, Diogo S. Biernaskie, Jeff del Sol, Antonio Schuurmans, Carol |
description | Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools. Double+ NPCs, at the hierarchical apex, are least lineage restricted due to Neurog2-Ascl1 cross-repression and display unique features of multipotency (more open chromatin, complex gene regulatory network, G2 pausing). Strikingly, selectively eliminating double+ NPCs by crossing Neurog2-Ascl1 split-Cre mice with diphtheria toxin-dependent “deleter” strains locally disrupts Notch signaling, perturbs neurogenic symmetry, and triggers cortical folding. In support of our discovery that double+ NPCs are Notch-ligand-expressing “niche” cells that control neurogenic periodicity and cortical folding, NEUROG2, ASCL1, and HES1 transcript distribution is modular (adjacent high/low zones) in gyrencephalic macaque cortices, prefiguring future folds.
[Display omitted]
•Neurog2 and Ascl1 proneural gene expression defines four transitional NPC states•Neurog2-Ascl1 cross-repress to block lineage bias of double+ NPCs at hierarchy apex•Double+ NPCs direct uniform neurogenesis via Notch to sustain murine lissencephaly•NEUROG2, ASCL1, and HES1 expression is modular in gyrencephalic macaque cortices
Emergence of a gyrencephalic cortex is associated with a break in neurogenic continuity across the cortical germinal zone. Han et al. identify a pool of unbiased neural progenitor cells at a lineage bifurcation point that co-express Neurog2 and Ascl1 and produce Notch ligands to control neurogenic periodicity and cortical folding. |
doi_str_mv | 10.1016/j.neuron.2021.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03435179v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627321005067</els_id><sourcerecordid>2562828107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-723d39370ed0357d32b824101a7728f21b2fdda6db03d2eec66b489bdc401ba73</originalsourceid><addsrcrecordid>eNp9kEFP3DAQha2KSl2g_6CHHOGQMLazcXJBQghYpJXgAGfXsSdbr4K92A5S_z0OQRw5WXp-75uZR8gfChUF2lzsK4dT8K5iwGgFogIQP8iKQifKmnbdEVlB2zVlwwT_RY5j3APQet3RFfn7mHM5rMZihw5jYXCwDotd8JMzZUwqYRGmMf8kXwTcTeOsfMzLAauLg0oJg7NuVyhnCu1DsjrjBj-aLJ6Sn4MaI_7-fE_I8-3N0_Wm3D7c3V9fbUudN0ylYNzwjgtAA3wtDGd9y-p8nRKCtQOjPRuMUY3pgRuGqJumr9uuN7oG2ivBT8j5wv2nRnkI9kWF_9IrKzdXWzlrwGu-pqJ7o9l7tngPwb9OGJN8sVHjOCqHfoqSrRvWspbCjK0Xqw4-xoDDF5uCnMuXe7mUL-fyJQgJH7HLJYb55DeLQUZt0Wk0NqBO0nj7PeAdUcGQSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562828107</pqid></control><display><type>article</type><title>Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding</title><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Han, Sisu ; Okawa, Satoshi ; Wilkinson, Grey Atteridge ; Ghazale, Hussein ; Adnani, Lata ; Dixit, Rajiv ; Tavares, Ligia ; Faisal, Imrul ; Brooks, Matthew J. ; Cortay, Veronique ; Zinyk, Dawn ; Sivitilli, Adam ; Li, Saiqun ; Malik, Faizan ; Ilnytskyy, Yaroslav ; Angarica, Vladimir Espinosa ; Gao, Jinghua ; Chinchalongporn, Vorapin ; Oproescu, Ana-Maria ; Vasan, Lakshmy ; Touahri, Yacine ; David, Luke Ajay ; Raharjo, Eko ; Kim, Jung-Woong ; Wu, Wei ; Rahmani, Waleed ; Chan, Jennifer Ai-wen ; Kovalchuk, Igor ; Attisano, Liliana ; Kurrasch, Deborah ; Dehay, Colette ; Swaroop, Anand ; Castro, Diogo S. ; Biernaskie, Jeff ; del Sol, Antonio ; Schuurmans, Carol</creator><creatorcontrib>Han, Sisu ; Okawa, Satoshi ; Wilkinson, Grey Atteridge ; Ghazale, Hussein ; Adnani, Lata ; Dixit, Rajiv ; Tavares, Ligia ; Faisal, Imrul ; Brooks, Matthew J. ; Cortay, Veronique ; Zinyk, Dawn ; Sivitilli, Adam ; Li, Saiqun ; Malik, Faizan ; Ilnytskyy, Yaroslav ; Angarica, Vladimir Espinosa ; Gao, Jinghua ; Chinchalongporn, Vorapin ; Oproescu, Ana-Maria ; Vasan, Lakshmy ; Touahri, Yacine ; David, Luke Ajay ; Raharjo, Eko ; Kim, Jung-Woong ; Wu, Wei ; Rahmani, Waleed ; Chan, Jennifer Ai-wen ; Kovalchuk, Igor ; Attisano, Liliana ; Kurrasch, Deborah ; Dehay, Colette ; Swaroop, Anand ; Castro, Diogo S. ; Biernaskie, Jeff ; del Sol, Antonio ; Schuurmans, Carol</creatorcontrib><description>Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools. Double+ NPCs, at the hierarchical apex, are least lineage restricted due to Neurog2-Ascl1 cross-repression and display unique features of multipotency (more open chromatin, complex gene regulatory network, G2 pausing). Strikingly, selectively eliminating double+ NPCs by crossing Neurog2-Ascl1 split-Cre mice with diphtheria toxin-dependent “deleter” strains locally disrupts Notch signaling, perturbs neurogenic symmetry, and triggers cortical folding. In support of our discovery that double+ NPCs are Notch-ligand-expressing “niche” cells that control neurogenic periodicity and cortical folding, NEUROG2, ASCL1, and HES1 transcript distribution is modular (adjacent high/low zones) in gyrencephalic macaque cortices, prefiguring future folds.
[Display omitted]
•Neurog2 and Ascl1 proneural gene expression defines four transitional NPC states•Neurog2-Ascl1 cross-repress to block lineage bias of double+ NPCs at hierarchy apex•Double+ NPCs direct uniform neurogenesis via Notch to sustain murine lissencephaly•NEUROG2, ASCL1, and HES1 expression is modular in gyrencephalic macaque cortices
Emergence of a gyrencephalic cortex is associated with a break in neurogenic continuity across the cortical germinal zone. Han et al. identify a pool of unbiased neural progenitor cells at a lineage bifurcation point that co-express Neurog2 and Ascl1 and produce Notch ligands to control neurogenic periodicity and cortical folding.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2021.07.007</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>cortical folding ; epigenome ; gene regulatory network ; Life Sciences ; lineage priming ; neocortex ; neural lineages ; neural progenitor cells ; Neurobiology ; Neurons and Cognition ; Notch signaling ; proneural genes ; transcriptome</subject><ispartof>Neuron (Cambridge, Mass.), 2021-09, Vol.109 (18), p.2847-2863.e11</ispartof><rights>2021 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-723d39370ed0357d32b824101a7728f21b2fdda6db03d2eec66b489bdc401ba73</citedby><cites>FETCH-LOGICAL-c419t-723d39370ed0357d32b824101a7728f21b2fdda6db03d2eec66b489bdc401ba73</cites><orcidid>0000-0001-6089-741X ; 0000-0003-1153-7762 ; 0000-0002-1975-1141 ; 0000-0003-4613-8032 ; 0000-0002-3268-8730 ; 0000-0003-3567-0058 ; 0000-0003-4824-2642 ; 0000-0001-9487-7978 ; 0000-0002-7636-0657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627321005067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03435179$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Sisu</creatorcontrib><creatorcontrib>Okawa, Satoshi</creatorcontrib><creatorcontrib>Wilkinson, Grey Atteridge</creatorcontrib><creatorcontrib>Ghazale, Hussein</creatorcontrib><creatorcontrib>Adnani, Lata</creatorcontrib><creatorcontrib>Dixit, Rajiv</creatorcontrib><creatorcontrib>Tavares, Ligia</creatorcontrib><creatorcontrib>Faisal, Imrul</creatorcontrib><creatorcontrib>Brooks, Matthew J.</creatorcontrib><creatorcontrib>Cortay, Veronique</creatorcontrib><creatorcontrib>Zinyk, Dawn</creatorcontrib><creatorcontrib>Sivitilli, Adam</creatorcontrib><creatorcontrib>Li, Saiqun</creatorcontrib><creatorcontrib>Malik, Faizan</creatorcontrib><creatorcontrib>Ilnytskyy, Yaroslav</creatorcontrib><creatorcontrib>Angarica, Vladimir Espinosa</creatorcontrib><creatorcontrib>Gao, Jinghua</creatorcontrib><creatorcontrib>Chinchalongporn, Vorapin</creatorcontrib><creatorcontrib>Oproescu, Ana-Maria</creatorcontrib><creatorcontrib>Vasan, Lakshmy</creatorcontrib><creatorcontrib>Touahri, Yacine</creatorcontrib><creatorcontrib>David, Luke Ajay</creatorcontrib><creatorcontrib>Raharjo, Eko</creatorcontrib><creatorcontrib>Kim, Jung-Woong</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Rahmani, Waleed</creatorcontrib><creatorcontrib>Chan, Jennifer Ai-wen</creatorcontrib><creatorcontrib>Kovalchuk, Igor</creatorcontrib><creatorcontrib>Attisano, Liliana</creatorcontrib><creatorcontrib>Kurrasch, Deborah</creatorcontrib><creatorcontrib>Dehay, Colette</creatorcontrib><creatorcontrib>Swaroop, Anand</creatorcontrib><creatorcontrib>Castro, Diogo S.</creatorcontrib><creatorcontrib>Biernaskie, Jeff</creatorcontrib><creatorcontrib>del Sol, Antonio</creatorcontrib><creatorcontrib>Schuurmans, Carol</creatorcontrib><title>Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding</title><title>Neuron (Cambridge, Mass.)</title><description>Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools. Double+ NPCs, at the hierarchical apex, are least lineage restricted due to Neurog2-Ascl1 cross-repression and display unique features of multipotency (more open chromatin, complex gene regulatory network, G2 pausing). Strikingly, selectively eliminating double+ NPCs by crossing Neurog2-Ascl1 split-Cre mice with diphtheria toxin-dependent “deleter” strains locally disrupts Notch signaling, perturbs neurogenic symmetry, and triggers cortical folding. In support of our discovery that double+ NPCs are Notch-ligand-expressing “niche” cells that control neurogenic periodicity and cortical folding, NEUROG2, ASCL1, and HES1 transcript distribution is modular (adjacent high/low zones) in gyrencephalic macaque cortices, prefiguring future folds.
[Display omitted]
•Neurog2 and Ascl1 proneural gene expression defines four transitional NPC states•Neurog2-Ascl1 cross-repress to block lineage bias of double+ NPCs at hierarchy apex•Double+ NPCs direct uniform neurogenesis via Notch to sustain murine lissencephaly•NEUROG2, ASCL1, and HES1 expression is modular in gyrencephalic macaque cortices
Emergence of a gyrencephalic cortex is associated with a break in neurogenic continuity across the cortical germinal zone. Han et al. identify a pool of unbiased neural progenitor cells at a lineage bifurcation point that co-express Neurog2 and Ascl1 and produce Notch ligands to control neurogenic periodicity and cortical folding.</description><subject>cortical folding</subject><subject>epigenome</subject><subject>gene regulatory network</subject><subject>Life Sciences</subject><subject>lineage priming</subject><subject>neocortex</subject><subject>neural lineages</subject><subject>neural progenitor cells</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Notch signaling</subject><subject>proneural genes</subject><subject>transcriptome</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP3DAQha2KSl2g_6CHHOGQMLazcXJBQghYpJXgAGfXsSdbr4K92A5S_z0OQRw5WXp-75uZR8gfChUF2lzsK4dT8K5iwGgFogIQP8iKQifKmnbdEVlB2zVlwwT_RY5j3APQet3RFfn7mHM5rMZihw5jYXCwDotd8JMzZUwqYRGmMf8kXwTcTeOsfMzLAauLg0oJg7NuVyhnCu1DsjrjBj-aLJ6Sn4MaI_7-fE_I8-3N0_Wm3D7c3V9fbUudN0ylYNzwjgtAA3wtDGd9y-p8nRKCtQOjPRuMUY3pgRuGqJumr9uuN7oG2ivBT8j5wv2nRnkI9kWF_9IrKzdXWzlrwGu-pqJ7o9l7tngPwb9OGJN8sVHjOCqHfoqSrRvWspbCjK0Xqw4-xoDDF5uCnMuXe7mUL-fyJQgJH7HLJYb55DeLQUZt0Wk0NqBO0nj7PeAdUcGQSw</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Han, Sisu</creator><creator>Okawa, Satoshi</creator><creator>Wilkinson, Grey Atteridge</creator><creator>Ghazale, Hussein</creator><creator>Adnani, Lata</creator><creator>Dixit, Rajiv</creator><creator>Tavares, Ligia</creator><creator>Faisal, Imrul</creator><creator>Brooks, Matthew J.</creator><creator>Cortay, Veronique</creator><creator>Zinyk, Dawn</creator><creator>Sivitilli, Adam</creator><creator>Li, Saiqun</creator><creator>Malik, Faizan</creator><creator>Ilnytskyy, Yaroslav</creator><creator>Angarica, Vladimir Espinosa</creator><creator>Gao, Jinghua</creator><creator>Chinchalongporn, Vorapin</creator><creator>Oproescu, Ana-Maria</creator><creator>Vasan, Lakshmy</creator><creator>Touahri, Yacine</creator><creator>David, Luke Ajay</creator><creator>Raharjo, Eko</creator><creator>Kim, Jung-Woong</creator><creator>Wu, Wei</creator><creator>Rahmani, Waleed</creator><creator>Chan, Jennifer Ai-wen</creator><creator>Kovalchuk, Igor</creator><creator>Attisano, Liliana</creator><creator>Kurrasch, Deborah</creator><creator>Dehay, Colette</creator><creator>Swaroop, Anand</creator><creator>Castro, Diogo S.</creator><creator>Biernaskie, Jeff</creator><creator>del Sol, Antonio</creator><creator>Schuurmans, Carol</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6089-741X</orcidid><orcidid>https://orcid.org/0000-0003-1153-7762</orcidid><orcidid>https://orcid.org/0000-0002-1975-1141</orcidid><orcidid>https://orcid.org/0000-0003-4613-8032</orcidid><orcidid>https://orcid.org/0000-0002-3268-8730</orcidid><orcidid>https://orcid.org/0000-0003-3567-0058</orcidid><orcidid>https://orcid.org/0000-0003-4824-2642</orcidid><orcidid>https://orcid.org/0000-0001-9487-7978</orcidid><orcidid>https://orcid.org/0000-0002-7636-0657</orcidid></search><sort><creationdate>20210915</creationdate><title>Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding</title><author>Han, Sisu ; Okawa, Satoshi ; Wilkinson, Grey Atteridge ; Ghazale, Hussein ; Adnani, Lata ; Dixit, Rajiv ; Tavares, Ligia ; Faisal, Imrul ; Brooks, Matthew J. ; Cortay, Veronique ; Zinyk, Dawn ; Sivitilli, Adam ; Li, Saiqun ; Malik, Faizan ; Ilnytskyy, Yaroslav ; Angarica, Vladimir Espinosa ; Gao, Jinghua ; Chinchalongporn, Vorapin ; Oproescu, Ana-Maria ; Vasan, Lakshmy ; Touahri, Yacine ; David, Luke Ajay ; Raharjo, Eko ; Kim, Jung-Woong ; Wu, Wei ; Rahmani, Waleed ; Chan, Jennifer Ai-wen ; Kovalchuk, Igor ; Attisano, Liliana ; Kurrasch, Deborah ; Dehay, Colette ; Swaroop, Anand ; Castro, Diogo S. ; Biernaskie, Jeff ; del Sol, Antonio ; Schuurmans, Carol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-723d39370ed0357d32b824101a7728f21b2fdda6db03d2eec66b489bdc401ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cortical folding</topic><topic>epigenome</topic><topic>gene regulatory network</topic><topic>Life Sciences</topic><topic>lineage priming</topic><topic>neocortex</topic><topic>neural lineages</topic><topic>neural progenitor cells</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Notch signaling</topic><topic>proneural genes</topic><topic>transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Sisu</creatorcontrib><creatorcontrib>Okawa, Satoshi</creatorcontrib><creatorcontrib>Wilkinson, Grey Atteridge</creatorcontrib><creatorcontrib>Ghazale, Hussein</creatorcontrib><creatorcontrib>Adnani, Lata</creatorcontrib><creatorcontrib>Dixit, Rajiv</creatorcontrib><creatorcontrib>Tavares, Ligia</creatorcontrib><creatorcontrib>Faisal, Imrul</creatorcontrib><creatorcontrib>Brooks, Matthew J.</creatorcontrib><creatorcontrib>Cortay, Veronique</creatorcontrib><creatorcontrib>Zinyk, Dawn</creatorcontrib><creatorcontrib>Sivitilli, Adam</creatorcontrib><creatorcontrib>Li, Saiqun</creatorcontrib><creatorcontrib>Malik, Faizan</creatorcontrib><creatorcontrib>Ilnytskyy, Yaroslav</creatorcontrib><creatorcontrib>Angarica, Vladimir Espinosa</creatorcontrib><creatorcontrib>Gao, Jinghua</creatorcontrib><creatorcontrib>Chinchalongporn, Vorapin</creatorcontrib><creatorcontrib>Oproescu, Ana-Maria</creatorcontrib><creatorcontrib>Vasan, Lakshmy</creatorcontrib><creatorcontrib>Touahri, Yacine</creatorcontrib><creatorcontrib>David, Luke Ajay</creatorcontrib><creatorcontrib>Raharjo, Eko</creatorcontrib><creatorcontrib>Kim, Jung-Woong</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Rahmani, Waleed</creatorcontrib><creatorcontrib>Chan, Jennifer Ai-wen</creatorcontrib><creatorcontrib>Kovalchuk, Igor</creatorcontrib><creatorcontrib>Attisano, Liliana</creatorcontrib><creatorcontrib>Kurrasch, Deborah</creatorcontrib><creatorcontrib>Dehay, Colette</creatorcontrib><creatorcontrib>Swaroop, Anand</creatorcontrib><creatorcontrib>Castro, Diogo S.</creatorcontrib><creatorcontrib>Biernaskie, Jeff</creatorcontrib><creatorcontrib>del Sol, Antonio</creatorcontrib><creatorcontrib>Schuurmans, Carol</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Sisu</au><au>Okawa, Satoshi</au><au>Wilkinson, Grey Atteridge</au><au>Ghazale, Hussein</au><au>Adnani, Lata</au><au>Dixit, Rajiv</au><au>Tavares, Ligia</au><au>Faisal, Imrul</au><au>Brooks, Matthew J.</au><au>Cortay, Veronique</au><au>Zinyk, Dawn</au><au>Sivitilli, Adam</au><au>Li, Saiqun</au><au>Malik, Faizan</au><au>Ilnytskyy, Yaroslav</au><au>Angarica, Vladimir Espinosa</au><au>Gao, Jinghua</au><au>Chinchalongporn, Vorapin</au><au>Oproescu, Ana-Maria</au><au>Vasan, Lakshmy</au><au>Touahri, Yacine</au><au>David, Luke Ajay</au><au>Raharjo, Eko</au><au>Kim, Jung-Woong</au><au>Wu, Wei</au><au>Rahmani, Waleed</au><au>Chan, Jennifer Ai-wen</au><au>Kovalchuk, Igor</au><au>Attisano, Liliana</au><au>Kurrasch, Deborah</au><au>Dehay, Colette</au><au>Swaroop, Anand</au><au>Castro, Diogo S.</au><au>Biernaskie, Jeff</au><au>del Sol, Antonio</au><au>Schuurmans, Carol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>109</volume><issue>18</issue><spage>2847</spage><epage>2863.e11</epage><pages>2847-2863.e11</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools. Double+ NPCs, at the hierarchical apex, are least lineage restricted due to Neurog2-Ascl1 cross-repression and display unique features of multipotency (more open chromatin, complex gene regulatory network, G2 pausing). Strikingly, selectively eliminating double+ NPCs by crossing Neurog2-Ascl1 split-Cre mice with diphtheria toxin-dependent “deleter” strains locally disrupts Notch signaling, perturbs neurogenic symmetry, and triggers cortical folding. In support of our discovery that double+ NPCs are Notch-ligand-expressing “niche” cells that control neurogenic periodicity and cortical folding, NEUROG2, ASCL1, and HES1 transcript distribution is modular (adjacent high/low zones) in gyrencephalic macaque cortices, prefiguring future folds.
[Display omitted]
•Neurog2 and Ascl1 proneural gene expression defines four transitional NPC states•Neurog2-Ascl1 cross-repress to block lineage bias of double+ NPCs at hierarchy apex•Double+ NPCs direct uniform neurogenesis via Notch to sustain murine lissencephaly•NEUROG2, ASCL1, and HES1 expression is modular in gyrencephalic macaque cortices
Emergence of a gyrencephalic cortex is associated with a break in neurogenic continuity across the cortical germinal zone. Han et al. identify a pool of unbiased neural progenitor cells at a lineage bifurcation point that co-express Neurog2 and Ascl1 and produce Notch ligands to control neurogenic periodicity and cortical folding.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.neuron.2021.07.007</doi><orcidid>https://orcid.org/0000-0001-6089-741X</orcidid><orcidid>https://orcid.org/0000-0003-1153-7762</orcidid><orcidid>https://orcid.org/0000-0002-1975-1141</orcidid><orcidid>https://orcid.org/0000-0003-4613-8032</orcidid><orcidid>https://orcid.org/0000-0002-3268-8730</orcidid><orcidid>https://orcid.org/0000-0003-3567-0058</orcidid><orcidid>https://orcid.org/0000-0003-4824-2642</orcidid><orcidid>https://orcid.org/0000-0001-9487-7978</orcidid><orcidid>https://orcid.org/0000-0002-7636-0657</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2021-09, Vol.109 (18), p.2847-2863.e11 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03435179v1 |
source | Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals |
subjects | cortical folding epigenome gene regulatory network Life Sciences lineage priming neocortex neural lineages neural progenitor cells Neurobiology Neurons and Cognition Notch signaling proneural genes transcriptome |
title | Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proneural%20genes%20define%20ground-state%20rules%20to%20regulate%20neurogenic%20patterning%20and%20cortical%20folding&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Han,%20Sisu&rft.date=2021-09-15&rft.volume=109&rft.issue=18&rft.spage=2847&rft.epage=2863.e11&rft.pages=2847-2863.e11&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2021.07.007&rft_dat=%3Cproquest_hal_p%3E2562828107%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562828107&rft_id=info:pmid/&rft_els_id=S0896627321005067&rfr_iscdi=true |