Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < z < 6.4
Rest-frame ultraviolet (UV) emission lines probe electron densities, gas-phase abundances, metallicities, and ionization parameters of the emitting star-forming galaxies and their environments. The strongest main UV emission line, Ly α , has been instrumental in advancing the general knowledge of ga...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2021-10, Vol.654, p.A80 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A80 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 654 |
creator | Schmidt, K. B. Kerutt, J. Wisotzki, L. Urrutia, T. Feltre, A. Maseda, M. V. Nanayakkara, T. Bacon, R. Boogaard, L. A. Conseil, S. Contini, T. Herenz, E. C. Kollatschny, W. Krumpe, M. Leclercq, F. Mahler, G. Matthee, J. Mauerhofer, V. Richard, J. Schaye, J. |
description | Rest-frame ultraviolet (UV) emission lines probe electron densities, gas-phase abundances, metallicities, and ionization parameters of the emitting star-forming galaxies and their environments. The strongest main UV emission line, Ly
α
, has been instrumental in advancing the general knowledge of galaxy formation in the early universe. However, observing Ly
α
emission becomes increasingly challenging at
z
≳ 6 when the neutral hydrogen fraction of the circumgalactic and intergalactic media increases. Secondary weaker UV emission lines provide important alternative methods for studying galaxy properties at high redshift. We present a large sample of rest-frame UV emission line sources at intermediate redshift for calibrating and exploring the connection between secondary UV lines and the emitting galaxies’ physical properties and their Ly
α
emission. The sample of 2052 emission line sources with 1.5 |
doi_str_mv | 10.1051/0004-6361/202140876 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03434273v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590105666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f0ba93ba321407076f98902c20c200daf4614c9aead4ccab3011579eeb929ff33</originalsourceid><addsrcrecordid>eNo9kU1LAzEQhoMoWKu_wEvAk4dtJx-bbcBLKWqFiqDWa8juJjZlu6lJW62_3iyVwrwMMzzMMO8gdE1gQCAnQwDgmWCCDClQwmFUiBPUI5zRDAouTlHvSJyjixiXqaRkxHpo-WoqvzNhj3VbJ-lmH13E3uJg4iazQa8Mnn9gs3IxOt_ixrUmYtdiCjnFn7rRPy41fBlN2Jkaf7vNAj_P3-6x3mAyyPEd_k0SA36Jzqxuorn6z300f7h_n0yz2cvj02Q8yyqWi7QSSi1ZqVl3SAGFsHIkgVYUUkCtLReEV1IbXfOq0iUDQvJCGlNKKq1lrI9uD3MXulHr4FY67JXXTk3HM9X1gHHGacF2JLE3B3Yd_Nc2XayWfhuSC1HRXEIyVwiRKHagquBjDMYexxJQ3QNUZ6_q7FXHB7A_wtFz5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590105666</pqid></control><display><type>article</type><title>Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < z < 6.4</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Schmidt, K. B. ; Kerutt, J. ; Wisotzki, L. ; Urrutia, T. ; Feltre, A. ; Maseda, M. V. ; Nanayakkara, T. ; Bacon, R. ; Boogaard, L. A. ; Conseil, S. ; Contini, T. ; Herenz, E. C. ; Kollatschny, W. ; Krumpe, M. ; Leclercq, F. ; Mahler, G. ; Matthee, J. ; Mauerhofer, V. ; Richard, J. ; Schaye, J.</creator><creatorcontrib>Schmidt, K. B. ; Kerutt, J. ; Wisotzki, L. ; Urrutia, T. ; Feltre, A. ; Maseda, M. V. ; Nanayakkara, T. ; Bacon, R. ; Boogaard, L. A. ; Conseil, S. ; Contini, T. ; Herenz, E. C. ; Kollatschny, W. ; Krumpe, M. ; Leclercq, F. ; Mahler, G. ; Matthee, J. ; Mauerhofer, V. ; Richard, J. ; Schaye, J.</creatorcontrib><description>Rest-frame ultraviolet (UV) emission lines probe electron densities, gas-phase abundances, metallicities, and ionization parameters of the emitting star-forming galaxies and their environments. The strongest main UV emission line, Ly
α
, has been instrumental in advancing the general knowledge of galaxy formation in the early universe. However, observing Ly
α
emission becomes increasingly challenging at
z
≳ 6 when the neutral hydrogen fraction of the circumgalactic and intergalactic media increases. Secondary weaker UV emission lines provide important alternative methods for studying galaxy properties at high redshift. We present a large sample of rest-frame UV emission line sources at intermediate redshift for calibrating and exploring the connection between secondary UV lines and the emitting galaxies’ physical properties and their Ly
α
emission. The sample of 2052 emission line sources with 1.5 <
z
< 6.4 was collected from integral field data from the MUSE-Wide and MUSE-Deep surveys taken as part of Guaranteed Time Observations. The objects were selected through untargeted source detection (i.e., no preselection of sources as in dedicated spectroscopic campaigns) in the three-dimensional MUSE data cubes. We searched optimally extracted one-dimensional spectra of the full sample for UV emission features via emission line template matching, resulting in a sample of more than 100 rest-frame UV emission line detections. We show that the detection efficiency of (non-Ly
α
) UV emission lines increases with survey depth, and that the emission line strength of He
II
λ
1640 Å, [O
III
]
λ
1661 + O
III
]
λ
1666, and [Si
III
]
λ
1883 + Si
III
]
λ
1892 correlate with the strength of [C
III
]
λ
1907 + C
III
]
λ
1909. The rest-frame equivalent width (EW
0
) of [C
III
]
λ
1907 + C
III
]
λ
1909 is found to be roughly 0.22 ± 0.18 of EW
0
(Ly
α
). We measured the velocity offsets of resonant emission lines with respect to systemic tracers. For C
IV
λ
1548 + C
IV
λ
1551 we find that Δ
v
C
IV
≲ 250 km s
−1
, whereas Δ
v
Ly
α
falls in the range of 250−500 km s
−1
which is in agreement with previous results from the literature. The electron density
n
e
measured from [Si
III
]
λ
1883 + Si
III
]
λ
1892 and [C
III
]
λ
1907 + C
III
]
λ
1909 line flux ratios is generally < 10
5
cm
−3
and the gas-phase abundance is below solar at 12 + log
10
(O/H)≈8. Lastly, we used “PhotoIonization Model Probability Density Functions” to infer physical parameters of the full sample and individual systems based on photoionization model parameter grids and observational constraints from our UV emission line searches. This reveals that the UV line emitters generally have ionization parameter log
10
(U) ≈ −2.5 and metal mass fractions that scatter around
Z
≈ 10
−2
, that is
Z
≈ 0.66
Z
⊙
. Value-added catalogs of the full sample of MUSE objects studied in this work and a collection of UV line emitters from the literature are provided with this paper.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202140876</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Abundance ; Astrophysics ; Constraint modelling ; Cubes ; Data search ; Electron density ; Emission analysis ; Emitters ; Feature extraction ; Galactic evolution ; Intergalactic media ; Ionization ; Object recognition ; Parameters ; Photoionization ; Physical properties ; Probability density functions ; Red shift ; Sciences of the Universe ; Star & galaxy formation ; Star formation ; Stars & galaxies ; Template matching</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-10, Vol.654, p.A80</ispartof><rights>Copyright EDP Sciences Oct 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-f0ba93ba321407076f98902c20c200daf4614c9aead4ccab3011579eeb929ff33</citedby><cites>FETCH-LOGICAL-c356t-f0ba93ba321407076f98902c20c200daf4614c9aead4ccab3011579eeb929ff33</cites><orcidid>0000-0002-3657-4191 ; 0000-0001-6865-2871 ; 0000-0003-0275-938X ; 0000-0003-0695-4414 ; 0000-0003-2871-127X ; 0000-0002-3418-7251 ; 0000-0001-6746-9936 ; 0000-0002-0668-5560 ; 0000-0002-1273-2300 ; 0000-0002-3952-8588 ; 0000-0003-0595-9483 ; 0000-0001-5492-1049 ; 0000-0002-8505-4678 ; 0000-0003-2804-0648 ; 0000-0002-0417-1494 ; 0000-0002-6085-5073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3718,27915,27916</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03434273$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, K. B.</creatorcontrib><creatorcontrib>Kerutt, J.</creatorcontrib><creatorcontrib>Wisotzki, L.</creatorcontrib><creatorcontrib>Urrutia, T.</creatorcontrib><creatorcontrib>Feltre, A.</creatorcontrib><creatorcontrib>Maseda, M. V.</creatorcontrib><creatorcontrib>Nanayakkara, T.</creatorcontrib><creatorcontrib>Bacon, R.</creatorcontrib><creatorcontrib>Boogaard, L. A.</creatorcontrib><creatorcontrib>Conseil, S.</creatorcontrib><creatorcontrib>Contini, T.</creatorcontrib><creatorcontrib>Herenz, E. C.</creatorcontrib><creatorcontrib>Kollatschny, W.</creatorcontrib><creatorcontrib>Krumpe, M.</creatorcontrib><creatorcontrib>Leclercq, F.</creatorcontrib><creatorcontrib>Mahler, G.</creatorcontrib><creatorcontrib>Matthee, J.</creatorcontrib><creatorcontrib>Mauerhofer, V.</creatorcontrib><creatorcontrib>Richard, J.</creatorcontrib><creatorcontrib>Schaye, J.</creatorcontrib><title>Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < z < 6.4</title><title>Astronomy and astrophysics (Berlin)</title><description>Rest-frame ultraviolet (UV) emission lines probe electron densities, gas-phase abundances, metallicities, and ionization parameters of the emitting star-forming galaxies and their environments. The strongest main UV emission line, Ly
α
, has been instrumental in advancing the general knowledge of galaxy formation in the early universe. However, observing Ly
α
emission becomes increasingly challenging at
z
≳ 6 when the neutral hydrogen fraction of the circumgalactic and intergalactic media increases. Secondary weaker UV emission lines provide important alternative methods for studying galaxy properties at high redshift. We present a large sample of rest-frame UV emission line sources at intermediate redshift for calibrating and exploring the connection between secondary UV lines and the emitting galaxies’ physical properties and their Ly
α
emission. The sample of 2052 emission line sources with 1.5 <
z
< 6.4 was collected from integral field data from the MUSE-Wide and MUSE-Deep surveys taken as part of Guaranteed Time Observations. The objects were selected through untargeted source detection (i.e., no preselection of sources as in dedicated spectroscopic campaigns) in the three-dimensional MUSE data cubes. We searched optimally extracted one-dimensional spectra of the full sample for UV emission features via emission line template matching, resulting in a sample of more than 100 rest-frame UV emission line detections. We show that the detection efficiency of (non-Ly
α
) UV emission lines increases with survey depth, and that the emission line strength of He
II
λ
1640 Å, [O
III
]
λ
1661 + O
III
]
λ
1666, and [Si
III
]
λ
1883 + Si
III
]
λ
1892 correlate with the strength of [C
III
]
λ
1907 + C
III
]
λ
1909. The rest-frame equivalent width (EW
0
) of [C
III
]
λ
1907 + C
III
]
λ
1909 is found to be roughly 0.22 ± 0.18 of EW
0
(Ly
α
). We measured the velocity offsets of resonant emission lines with respect to systemic tracers. For C
IV
λ
1548 + C
IV
λ
1551 we find that Δ
v
C
IV
≲ 250 km s
−1
, whereas Δ
v
Ly
α
falls in the range of 250−500 km s
−1
which is in agreement with previous results from the literature. The electron density
n
e
measured from [Si
III
]
λ
1883 + Si
III
]
λ
1892 and [C
III
]
λ
1907 + C
III
]
λ
1909 line flux ratios is generally < 10
5
cm
−3
and the gas-phase abundance is below solar at 12 + log
10
(O/H)≈8. Lastly, we used “PhotoIonization Model Probability Density Functions” to infer physical parameters of the full sample and individual systems based on photoionization model parameter grids and observational constraints from our UV emission line searches. This reveals that the UV line emitters generally have ionization parameter log
10
(U) ≈ −2.5 and metal mass fractions that scatter around
Z
≈ 10
−2
, that is
Z
≈ 0.66
Z
⊙
. Value-added catalogs of the full sample of MUSE objects studied in this work and a collection of UV line emitters from the literature are provided with this paper.</description><subject>Abundance</subject><subject>Astrophysics</subject><subject>Constraint modelling</subject><subject>Cubes</subject><subject>Data search</subject><subject>Electron density</subject><subject>Emission analysis</subject><subject>Emitters</subject><subject>Feature extraction</subject><subject>Galactic evolution</subject><subject>Intergalactic media</subject><subject>Ionization</subject><subject>Object recognition</subject><subject>Parameters</subject><subject>Photoionization</subject><subject>Physical properties</subject><subject>Probability density functions</subject><subject>Red shift</subject><subject>Sciences of the Universe</subject><subject>Star & galaxy formation</subject><subject>Star formation</subject><subject>Stars & galaxies</subject><subject>Template matching</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kU1LAzEQhoMoWKu_wEvAk4dtJx-bbcBLKWqFiqDWa8juJjZlu6lJW62_3iyVwrwMMzzMMO8gdE1gQCAnQwDgmWCCDClQwmFUiBPUI5zRDAouTlHvSJyjixiXqaRkxHpo-WoqvzNhj3VbJ-lmH13E3uJg4iazQa8Mnn9gs3IxOt_ixrUmYtdiCjnFn7rRPy41fBlN2Jkaf7vNAj_P3-6x3mAyyPEd_k0SA36Jzqxuorn6z300f7h_n0yz2cvj02Q8yyqWi7QSSi1ZqVl3SAGFsHIkgVYUUkCtLReEV1IbXfOq0iUDQvJCGlNKKq1lrI9uD3MXulHr4FY67JXXTk3HM9X1gHHGacF2JLE3B3Yd_Nc2XayWfhuSC1HRXEIyVwiRKHagquBjDMYexxJQ3QNUZ6_q7FXHB7A_wtFz5A</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Schmidt, K. B.</creator><creator>Kerutt, J.</creator><creator>Wisotzki, L.</creator><creator>Urrutia, T.</creator><creator>Feltre, A.</creator><creator>Maseda, M. V.</creator><creator>Nanayakkara, T.</creator><creator>Bacon, R.</creator><creator>Boogaard, L. A.</creator><creator>Conseil, S.</creator><creator>Contini, T.</creator><creator>Herenz, E. C.</creator><creator>Kollatschny, W.</creator><creator>Krumpe, M.</creator><creator>Leclercq, F.</creator><creator>Mahler, G.</creator><creator>Matthee, J.</creator><creator>Mauerhofer, V.</creator><creator>Richard, J.</creator><creator>Schaye, J.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3657-4191</orcidid><orcidid>https://orcid.org/0000-0001-6865-2871</orcidid><orcidid>https://orcid.org/0000-0003-0275-938X</orcidid><orcidid>https://orcid.org/0000-0003-0695-4414</orcidid><orcidid>https://orcid.org/0000-0003-2871-127X</orcidid><orcidid>https://orcid.org/0000-0002-3418-7251</orcidid><orcidid>https://orcid.org/0000-0001-6746-9936</orcidid><orcidid>https://orcid.org/0000-0002-0668-5560</orcidid><orcidid>https://orcid.org/0000-0002-1273-2300</orcidid><orcidid>https://orcid.org/0000-0002-3952-8588</orcidid><orcidid>https://orcid.org/0000-0003-0595-9483</orcidid><orcidid>https://orcid.org/0000-0001-5492-1049</orcidid><orcidid>https://orcid.org/0000-0002-8505-4678</orcidid><orcidid>https://orcid.org/0000-0003-2804-0648</orcidid><orcidid>https://orcid.org/0000-0002-0417-1494</orcidid><orcidid>https://orcid.org/0000-0002-6085-5073</orcidid></search><sort><creationdate>20211001</creationdate><title>Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < z < 6.4</title><author>Schmidt, K. B. ; Kerutt, J. ; Wisotzki, L. ; Urrutia, T. ; Feltre, A. ; Maseda, M. V. ; Nanayakkara, T. ; Bacon, R. ; Boogaard, L. A. ; Conseil, S. ; Contini, T. ; Herenz, E. C. ; Kollatschny, W. ; Krumpe, M. ; Leclercq, F. ; Mahler, G. ; Matthee, J. ; Mauerhofer, V. ; Richard, J. ; Schaye, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f0ba93ba321407076f98902c20c200daf4614c9aead4ccab3011579eeb929ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Astrophysics</topic><topic>Constraint modelling</topic><topic>Cubes</topic><topic>Data search</topic><topic>Electron density</topic><topic>Emission analysis</topic><topic>Emitters</topic><topic>Feature extraction</topic><topic>Galactic evolution</topic><topic>Intergalactic media</topic><topic>Ionization</topic><topic>Object recognition</topic><topic>Parameters</topic><topic>Photoionization</topic><topic>Physical properties</topic><topic>Probability density functions</topic><topic>Red shift</topic><topic>Sciences of the Universe</topic><topic>Star & galaxy formation</topic><topic>Star formation</topic><topic>Stars & galaxies</topic><topic>Template matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, K. B.</creatorcontrib><creatorcontrib>Kerutt, J.</creatorcontrib><creatorcontrib>Wisotzki, L.</creatorcontrib><creatorcontrib>Urrutia, T.</creatorcontrib><creatorcontrib>Feltre, A.</creatorcontrib><creatorcontrib>Maseda, M. V.</creatorcontrib><creatorcontrib>Nanayakkara, T.</creatorcontrib><creatorcontrib>Bacon, R.</creatorcontrib><creatorcontrib>Boogaard, L. A.</creatorcontrib><creatorcontrib>Conseil, S.</creatorcontrib><creatorcontrib>Contini, T.</creatorcontrib><creatorcontrib>Herenz, E. C.</creatorcontrib><creatorcontrib>Kollatschny, W.</creatorcontrib><creatorcontrib>Krumpe, M.</creatorcontrib><creatorcontrib>Leclercq, F.</creatorcontrib><creatorcontrib>Mahler, G.</creatorcontrib><creatorcontrib>Matthee, J.</creatorcontrib><creatorcontrib>Mauerhofer, V.</creatorcontrib><creatorcontrib>Richard, J.</creatorcontrib><creatorcontrib>Schaye, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, K. B.</au><au>Kerutt, J.</au><au>Wisotzki, L.</au><au>Urrutia, T.</au><au>Feltre, A.</au><au>Maseda, M. V.</au><au>Nanayakkara, T.</au><au>Bacon, R.</au><au>Boogaard, L. A.</au><au>Conseil, S.</au><au>Contini, T.</au><au>Herenz, E. C.</au><au>Kollatschny, W.</au><au>Krumpe, M.</au><au>Leclercq, F.</au><au>Mahler, G.</au><au>Matthee, J.</au><au>Mauerhofer, V.</au><au>Richard, J.</au><au>Schaye, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < z < 6.4</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>654</volume><spage>A80</spage><pages>A80-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Rest-frame ultraviolet (UV) emission lines probe electron densities, gas-phase abundances, metallicities, and ionization parameters of the emitting star-forming galaxies and their environments. The strongest main UV emission line, Ly
α
, has been instrumental in advancing the general knowledge of galaxy formation in the early universe. However, observing Ly
α
emission becomes increasingly challenging at
z
≳ 6 when the neutral hydrogen fraction of the circumgalactic and intergalactic media increases. Secondary weaker UV emission lines provide important alternative methods for studying galaxy properties at high redshift. We present a large sample of rest-frame UV emission line sources at intermediate redshift for calibrating and exploring the connection between secondary UV lines and the emitting galaxies’ physical properties and their Ly
α
emission. The sample of 2052 emission line sources with 1.5 <
z
< 6.4 was collected from integral field data from the MUSE-Wide and MUSE-Deep surveys taken as part of Guaranteed Time Observations. The objects were selected through untargeted source detection (i.e., no preselection of sources as in dedicated spectroscopic campaigns) in the three-dimensional MUSE data cubes. We searched optimally extracted one-dimensional spectra of the full sample for UV emission features via emission line template matching, resulting in a sample of more than 100 rest-frame UV emission line detections. We show that the detection efficiency of (non-Ly
α
) UV emission lines increases with survey depth, and that the emission line strength of He
II
λ
1640 Å, [O
III
]
λ
1661 + O
III
]
λ
1666, and [Si
III
]
λ
1883 + Si
III
]
λ
1892 correlate with the strength of [C
III
]
λ
1907 + C
III
]
λ
1909. The rest-frame equivalent width (EW
0
) of [C
III
]
λ
1907 + C
III
]
λ
1909 is found to be roughly 0.22 ± 0.18 of EW
0
(Ly
α
). We measured the velocity offsets of resonant emission lines with respect to systemic tracers. For C
IV
λ
1548 + C
IV
λ
1551 we find that Δ
v
C
IV
≲ 250 km s
−1
, whereas Δ
v
Ly
α
falls in the range of 250−500 km s
−1
which is in agreement with previous results from the literature. The electron density
n
e
measured from [Si
III
]
λ
1883 + Si
III
]
λ
1892 and [C
III
]
λ
1907 + C
III
]
λ
1909 line flux ratios is generally < 10
5
cm
−3
and the gas-phase abundance is below solar at 12 + log
10
(O/H)≈8. Lastly, we used “PhotoIonization Model Probability Density Functions” to infer physical parameters of the full sample and individual systems based on photoionization model parameter grids and observational constraints from our UV emission line searches. This reveals that the UV line emitters generally have ionization parameter log
10
(U) ≈ −2.5 and metal mass fractions that scatter around
Z
≈ 10
−2
, that is
Z
≈ 0.66
Z
⊙
. Value-added catalogs of the full sample of MUSE objects studied in this work and a collection of UV line emitters from the literature are provided with this paper.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202140876</doi><orcidid>https://orcid.org/0000-0002-3657-4191</orcidid><orcidid>https://orcid.org/0000-0001-6865-2871</orcidid><orcidid>https://orcid.org/0000-0003-0275-938X</orcidid><orcidid>https://orcid.org/0000-0003-0695-4414</orcidid><orcidid>https://orcid.org/0000-0003-2871-127X</orcidid><orcidid>https://orcid.org/0000-0002-3418-7251</orcidid><orcidid>https://orcid.org/0000-0001-6746-9936</orcidid><orcidid>https://orcid.org/0000-0002-0668-5560</orcidid><orcidid>https://orcid.org/0000-0002-1273-2300</orcidid><orcidid>https://orcid.org/0000-0002-3952-8588</orcidid><orcidid>https://orcid.org/0000-0003-0595-9483</orcidid><orcidid>https://orcid.org/0000-0001-5492-1049</orcidid><orcidid>https://orcid.org/0000-0002-8505-4678</orcidid><orcidid>https://orcid.org/0000-0003-2804-0648</orcidid><orcidid>https://orcid.org/0000-0002-0417-1494</orcidid><orcidid>https://orcid.org/0000-0002-6085-5073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2021-10, Vol.654, p.A80 |
issn | 0004-6361 1432-0746 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03434273v1 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences |
subjects | Abundance Astrophysics Constraint modelling Cubes Data search Electron density Emission analysis Emitters Feature extraction Galactic evolution Intergalactic media Ionization Object recognition Parameters Photoionization Physical properties Probability density functions Red shift Sciences of the Universe Star & galaxy formation Star formation Stars & galaxies Template matching |
title | Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < z < 6.4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20and%20analysis%20of%20rest-frame%20UV%20emission%20lines%20in%202052%20galaxies%20observed%20with%20MUSE%20at%201.5%20%3C%20z%20%3C%206.4&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Schmidt,%20K.%20B.&rft.date=2021-10-01&rft.volume=654&rft.spage=A80&rft.pages=A80-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202140876&rft_dat=%3Cproquest_hal_p%3E2590105666%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590105666&rft_id=info:pmid/&rfr_iscdi=true |