Optimizing high-quality graphene nanoflakes production through organic (bio)-precursor plasma decomposition

Atmospheric pressure plasma-based technique for the decomposition of biofuels allows obtaining high-quality graphene powder in one step, without the use of neither metal catalysts nor specific substrates. Despite the numerous advantages of this technology as compared to others, it is necessary to op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel processing technology 2021-02, Vol.212, p.106630, Article 106630
Hauptverfasser: Casanova, A., Rincón, R., Muñoz, J., Ania, C.O., Calzada, M.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106630
container_title Fuel processing technology
container_volume 212
creator Casanova, A.
Rincón, R.
Muñoz, J.
Ania, C.O.
Calzada, M.D.
description Atmospheric pressure plasma-based technique for the decomposition of biofuels allows obtaining high-quality graphene powder in one step, without the use of neither metal catalysts nor specific substrates. Despite the numerous advantages of this technology as compared to others, it is necessary to optimize the process to produce high-quality graphene at industrial scale. In this research, the influence of the ethanol flows in the 2.00 to 4.00 g h−1 range on the production rate and the quality of graphene has been thoroughly assessed, through a deep characterization of the synthetized material by various techniques. The graphene production rate steadily increased for ethanol flows increasing from 2.00 to 3.40 g h−1, presenting a maximum rate of 1.45 and 1.55 mg min−1 for 2.90 and 3.40 g h−1, respectively. Higher ethanol flows lead to a decrease in the production rate, favouring the formation of other carbon-based by-products such as methane and ethylene. High-quality graphene is formed in all plasma conditions, with the lowest number of defects being obtained for an ethanol flow of 2.90 g h−1 together with hydrogen and carbon monoxide as main gaseous by-products. [Display omitted] •Production of Graphene by ethanol decomposition by microwave plasma•Optimization of plasma experimental conditions for high-quality graphene production•Acting on the ethanol flow, a max. 1.55 mg min−1 graphene production rate is obtained.•Raman spectroscopy, HRTEM image, XRD and XPS analysis confirm high-quality graphene.
doi_str_mv 10.1016/j.fuproc.2020.106630
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03433529v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382020309218</els_id><sourcerecordid>2478821584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-9eb05f8a90575121188a9d9ab7a7610583deb9f17b1cc1b68c1bfcdf63f8d7d93</originalsourceid><addsrcrecordid>eNp9UU1LxDAQDaLguvoPPAS86KFr0rRNehFE_IKFveg5pPlos9ttukkrrL_elIpHLzMwvPdm3jwArjFaYYSL--3KjL13cpWidBoVBUEnYIEZJQnFjJ2CBSKUJYSl6BxchLBFCOV5SRdgt-kHu7fftqthY-smOYyitcMR1l70je407ETnTCt2OsC4Q41ysK6DQ-PdWDfQ-Vp0VsLbyrq7pPdajj44D_tWhL2ASku3712wE-kSnBnRBn3125fg8-X54-ktWW9e358e14nMcDYkpa5QbpgoUU5znOJoQJSqFBUVtMAoZ0TpqjSYVlhKXBUsFiOVKYhhiqqSLMHdrNuIlvfe7oU_cicsf3tc82mGSEZInpZfOGJvZmz0dhh1GPjWjb6L5_E0o4ylOGdZRGUzSnoXgtfmTxYjPkXAt3yOgE8R8DmCSHuYaTq6_bLa8yCt7qRWNj5q4MrZ_wV-AKk5kwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478821584</pqid></control><display><type>article</type><title>Optimizing high-quality graphene nanoflakes production through organic (bio)-precursor plasma decomposition</title><source>Elsevier ScienceDirect Journals</source><creator>Casanova, A. ; Rincón, R. ; Muñoz, J. ; Ania, C.O. ; Calzada, M.D.</creator><creatorcontrib>Casanova, A. ; Rincón, R. ; Muñoz, J. ; Ania, C.O. ; Calzada, M.D.</creatorcontrib><description>Atmospheric pressure plasma-based technique for the decomposition of biofuels allows obtaining high-quality graphene powder in one step, without the use of neither metal catalysts nor specific substrates. Despite the numerous advantages of this technology as compared to others, it is necessary to optimize the process to produce high-quality graphene at industrial scale. In this research, the influence of the ethanol flows in the 2.00 to 4.00 g h−1 range on the production rate and the quality of graphene has been thoroughly assessed, through a deep characterization of the synthetized material by various techniques. The graphene production rate steadily increased for ethanol flows increasing from 2.00 to 3.40 g h−1, presenting a maximum rate of 1.45 and 1.55 mg min−1 for 2.90 and 3.40 g h−1, respectively. Higher ethanol flows lead to a decrease in the production rate, favouring the formation of other carbon-based by-products such as methane and ethylene. High-quality graphene is formed in all plasma conditions, with the lowest number of defects being obtained for an ethanol flow of 2.90 g h−1 together with hydrogen and carbon monoxide as main gaseous by-products. [Display omitted] •Production of Graphene by ethanol decomposition by microwave plasma•Optimization of plasma experimental conditions for high-quality graphene production•Acting on the ethanol flow, a max. 1.55 mg min−1 graphene production rate is obtained.•Raman spectroscopy, HRTEM image, XRD and XPS analysis confirm high-quality graphene.</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2020.106630</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atmospheric pressure ; Biofuels ; By products ; Byproducts ; Carbon monoxide ; Catalysis ; Chemical Sciences ; Decomposition ; Environmental Engineering ; Environmental Sciences ; Ethanol ; Graphene ; Material chemistry ; Microwave ; Optimization ; Plasma ; Production rate ; Substrates</subject><ispartof>Fuel processing technology, 2021-02, Vol.212, p.106630, Article 106630</ispartof><rights>2020 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. Feb 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-9eb05f8a90575121188a9d9ab7a7610583deb9f17b1cc1b68c1bfcdf63f8d7d93</citedby><cites>FETCH-LOGICAL-c414t-9eb05f8a90575121188a9d9ab7a7610583deb9f17b1cc1b68c1bfcdf63f8d7d93</cites><orcidid>0000-0001-9517-8132 ; 0000-0003-0740-879X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuproc.2020.106630$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03433529$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Casanova, A.</creatorcontrib><creatorcontrib>Rincón, R.</creatorcontrib><creatorcontrib>Muñoz, J.</creatorcontrib><creatorcontrib>Ania, C.O.</creatorcontrib><creatorcontrib>Calzada, M.D.</creatorcontrib><title>Optimizing high-quality graphene nanoflakes production through organic (bio)-precursor plasma decomposition</title><title>Fuel processing technology</title><description>Atmospheric pressure plasma-based technique for the decomposition of biofuels allows obtaining high-quality graphene powder in one step, without the use of neither metal catalysts nor specific substrates. Despite the numerous advantages of this technology as compared to others, it is necessary to optimize the process to produce high-quality graphene at industrial scale. In this research, the influence of the ethanol flows in the 2.00 to 4.00 g h−1 range on the production rate and the quality of graphene has been thoroughly assessed, through a deep characterization of the synthetized material by various techniques. The graphene production rate steadily increased for ethanol flows increasing from 2.00 to 3.40 g h−1, presenting a maximum rate of 1.45 and 1.55 mg min−1 for 2.90 and 3.40 g h−1, respectively. Higher ethanol flows lead to a decrease in the production rate, favouring the formation of other carbon-based by-products such as methane and ethylene. High-quality graphene is formed in all plasma conditions, with the lowest number of defects being obtained for an ethanol flow of 2.90 g h−1 together with hydrogen and carbon monoxide as main gaseous by-products. [Display omitted] •Production of Graphene by ethanol decomposition by microwave plasma•Optimization of plasma experimental conditions for high-quality graphene production•Acting on the ethanol flow, a max. 1.55 mg min−1 graphene production rate is obtained.•Raman spectroscopy, HRTEM image, XRD and XPS analysis confirm high-quality graphene.</description><subject>Atmospheric pressure</subject><subject>Biofuels</subject><subject>By products</subject><subject>Byproducts</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Decomposition</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Ethanol</subject><subject>Graphene</subject><subject>Material chemistry</subject><subject>Microwave</subject><subject>Optimization</subject><subject>Plasma</subject><subject>Production rate</subject><subject>Substrates</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LxDAQDaLguvoPPAS86KFr0rRNehFE_IKFveg5pPlos9ttukkrrL_elIpHLzMwvPdm3jwArjFaYYSL--3KjL13cpWidBoVBUEnYIEZJQnFjJ2CBSKUJYSl6BxchLBFCOV5SRdgt-kHu7fftqthY-smOYyitcMR1l70je407ETnTCt2OsC4Q41ysK6DQ-PdWDfQ-Vp0VsLbyrq7pPdajj44D_tWhL2ASku3712wE-kSnBnRBn3125fg8-X54-ktWW9e358e14nMcDYkpa5QbpgoUU5znOJoQJSqFBUVtMAoZ0TpqjSYVlhKXBUsFiOVKYhhiqqSLMHdrNuIlvfe7oU_cicsf3tc82mGSEZInpZfOGJvZmz0dhh1GPjWjb6L5_E0o4ylOGdZRGUzSnoXgtfmTxYjPkXAt3yOgE8R8DmCSHuYaTq6_bLa8yCt7qRWNj5q4MrZ_wV-AKk5kwk</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Casanova, A.</creator><creator>Rincón, R.</creator><creator>Muñoz, J.</creator><creator>Ania, C.O.</creator><creator>Calzada, M.D.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9517-8132</orcidid><orcidid>https://orcid.org/0000-0003-0740-879X</orcidid></search><sort><creationdate>202102</creationdate><title>Optimizing high-quality graphene nanoflakes production through organic (bio)-precursor plasma decomposition</title><author>Casanova, A. ; Rincón, R. ; Muñoz, J. ; Ania, C.O. ; Calzada, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-9eb05f8a90575121188a9d9ab7a7610583deb9f17b1cc1b68c1bfcdf63f8d7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric pressure</topic><topic>Biofuels</topic><topic>By products</topic><topic>Byproducts</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Decomposition</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Ethanol</topic><topic>Graphene</topic><topic>Material chemistry</topic><topic>Microwave</topic><topic>Optimization</topic><topic>Plasma</topic><topic>Production rate</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casanova, A.</creatorcontrib><creatorcontrib>Rincón, R.</creatorcontrib><creatorcontrib>Muñoz, J.</creatorcontrib><creatorcontrib>Ania, C.O.</creatorcontrib><creatorcontrib>Calzada, M.D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casanova, A.</au><au>Rincón, R.</au><au>Muñoz, J.</au><au>Ania, C.O.</au><au>Calzada, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing high-quality graphene nanoflakes production through organic (bio)-precursor plasma decomposition</atitle><jtitle>Fuel processing technology</jtitle><date>2021-02</date><risdate>2021</risdate><volume>212</volume><spage>106630</spage><pages>106630-</pages><artnum>106630</artnum><issn>0378-3820</issn><eissn>1873-7188</eissn><abstract>Atmospheric pressure plasma-based technique for the decomposition of biofuels allows obtaining high-quality graphene powder in one step, without the use of neither metal catalysts nor specific substrates. Despite the numerous advantages of this technology as compared to others, it is necessary to optimize the process to produce high-quality graphene at industrial scale. In this research, the influence of the ethanol flows in the 2.00 to 4.00 g h−1 range on the production rate and the quality of graphene has been thoroughly assessed, through a deep characterization of the synthetized material by various techniques. The graphene production rate steadily increased for ethanol flows increasing from 2.00 to 3.40 g h−1, presenting a maximum rate of 1.45 and 1.55 mg min−1 for 2.90 and 3.40 g h−1, respectively. Higher ethanol flows lead to a decrease in the production rate, favouring the formation of other carbon-based by-products such as methane and ethylene. High-quality graphene is formed in all plasma conditions, with the lowest number of defects being obtained for an ethanol flow of 2.90 g h−1 together with hydrogen and carbon monoxide as main gaseous by-products. [Display omitted] •Production of Graphene by ethanol decomposition by microwave plasma•Optimization of plasma experimental conditions for high-quality graphene production•Acting on the ethanol flow, a max. 1.55 mg min−1 graphene production rate is obtained.•Raman spectroscopy, HRTEM image, XRD and XPS analysis confirm high-quality graphene.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2020.106630</doi><orcidid>https://orcid.org/0000-0001-9517-8132</orcidid><orcidid>https://orcid.org/0000-0003-0740-879X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-3820
ispartof Fuel processing technology, 2021-02, Vol.212, p.106630, Article 106630
issn 0378-3820
1873-7188
language eng
recordid cdi_hal_primary_oai_HAL_hal_03433529v1
source Elsevier ScienceDirect Journals
subjects Atmospheric pressure
Biofuels
By products
Byproducts
Carbon monoxide
Catalysis
Chemical Sciences
Decomposition
Environmental Engineering
Environmental Sciences
Ethanol
Graphene
Material chemistry
Microwave
Optimization
Plasma
Production rate
Substrates
title Optimizing high-quality graphene nanoflakes production through organic (bio)-precursor plasma decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20high-quality%20graphene%20nanoflakes%20production%20through%20organic%20(bio)-precursor%20plasma%20decomposition&rft.jtitle=Fuel%20processing%20technology&rft.au=Casanova,%20A.&rft.date=2021-02&rft.volume=212&rft.spage=106630&rft.pages=106630-&rft.artnum=106630&rft.issn=0378-3820&rft.eissn=1873-7188&rft_id=info:doi/10.1016/j.fuproc.2020.106630&rft_dat=%3Cproquest_hal_p%3E2478821584%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478821584&rft_id=info:pmid/&rft_els_id=S0378382020309218&rfr_iscdi=true