An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery
Semantic segmentation is an essential part of deep learning. In recent years, with the development of remote sensing big data, semantic segmentation has been increasingly used in remote sensing. Deep convolutional neural networks (DCNNs) face the challenge of feature fusion: very-high-resolution rem...
Gespeichert in:
Veröffentlicht in: | ISPRS journal of photogrammetry and remote sensing 2021-07, Vol.177, p.238-262 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | |
container_start_page | 238 |
container_title | ISPRS journal of photogrammetry and remote sensing |
container_volume | 177 |
creator | Yang, Xuan Li, Shanshan Chen, Zhengchao Chanussot, Jocelyn Jia, Xiuping Zhang, Bing Li, Baipeng Chen, Pan |
description | Semantic segmentation is an essential part of deep learning. In recent years, with the development of remote sensing big data, semantic segmentation has been increasingly used in remote sensing. Deep convolutional neural networks (DCNNs) face the challenge of feature fusion: very-high-resolution remote sensing image multisource data fusion can increase the network’s learnable information, which is conducive to correctly classifying target objects by DCNNs; simultaneously, the fusion of high-level abstract features and low-level spatial features can improve the classification accuracy at the border between target objects. In this paper, we propose a multipath encoder structure to extract features of multipath inputs, a multipath attention-fused block module to fuse multipath features, and a refinement attention-fused block module to fuse high-level abstract features and low-level spatial features. Furthermore, we propose a novel convolutional neural network architecture, named attention-fused network (AFNet). Based on our AFNet, we achieve state-of-the-art performance with an overall accuracy of 91.7% and a mean F1 score of 90.96% on the ISPRS Vaihingen 2D dataset and an overall accuracy of 92.1% and a mean F1 score of 93.44% on the ISPRS Potsdam 2D dataset. |
doi_str_mv | 10.1016/j.isprsjprs.2021.05.004 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03430200v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924271621001295</els_id><sourcerecordid>S0924271621001295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b51c85e28ccf0373a5d996f531fba8a47b88f8bdecce6b07d871d9fe5af09acd3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG-iVQ4vTNm16rCa-pElc4BylqdOlrM2UdEP796QM7crBsmU_ry2_hNxTSCjQ4rFPjN8534dIUkhpAiwByC_IgvIyjXmasUuygCrN47SkxTW58b4HAMoKviCqHiM5TThOxo6x3ntsoxGnb-u-Im1d5HGQYaZC0Q2BkjMXWR0d0B3jjek2sUNvt_vfvsPBThjY0Zuxi8wgu4Ddkisttx7v_vKSfD4_faxe4_X7y9uqXscqy6spbhhVnGHKldKQlZlkbVUVmmVUN5LLvGw417xpUSksGihbXtK20sikhkqqNluSh9PejdyKnQvX3VFYacRrvRZzD7I8gxTgQANbnljlrPcO9VlAQcy-il6cfRWzrwKYCL4GZX1SYnjlYNAJrwyOClvjUE2itebfHT8LRolk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Xuan ; Li, Shanshan ; Chen, Zhengchao ; Chanussot, Jocelyn ; Jia, Xiuping ; Zhang, Bing ; Li, Baipeng ; Chen, Pan</creator><creatorcontrib>Yang, Xuan ; Li, Shanshan ; Chen, Zhengchao ; Chanussot, Jocelyn ; Jia, Xiuping ; Zhang, Bing ; Li, Baipeng ; Chen, Pan</creatorcontrib><description>Semantic segmentation is an essential part of deep learning. In recent years, with the development of remote sensing big data, semantic segmentation has been increasingly used in remote sensing. Deep convolutional neural networks (DCNNs) face the challenge of feature fusion: very-high-resolution remote sensing image multisource data fusion can increase the network’s learnable information, which is conducive to correctly classifying target objects by DCNNs; simultaneously, the fusion of high-level abstract features and low-level spatial features can improve the classification accuracy at the border between target objects. In this paper, we propose a multipath encoder structure to extract features of multipath inputs, a multipath attention-fused block module to fuse multipath features, and a refinement attention-fused block module to fuse high-level abstract features and low-level spatial features. Furthermore, we propose a novel convolutional neural network architecture, named attention-fused network (AFNet). Based on our AFNet, we achieve state-of-the-art performance with an overall accuracy of 91.7% and a mean F1 score of 90.96% on the ISPRS Vaihingen 2D dataset and an overall accuracy of 92.1% and a mean F1 score of 93.44% on the ISPRS Potsdam 2D dataset.</description><identifier>ISSN: 0924-2716</identifier><identifier>EISSN: 1872-8235</identifier><identifier>DOI: 10.1016/j.isprsjprs.2021.05.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Attention-fused network ; Convolutional neural network ; Deep learning ; Engineering Sciences ; ISPRS ; Semantic segmentation ; Signal and Image processing ; Very-high-resolution imagery</subject><ispartof>ISPRS journal of photogrammetry and remote sensing, 2021-07, Vol.177, p.238-262</ispartof><rights>2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b51c85e28ccf0373a5d996f531fba8a47b88f8bdecce6b07d871d9fe5af09acd3</citedby><cites>FETCH-LOGICAL-c349t-b51c85e28ccf0373a5d996f531fba8a47b88f8bdecce6b07d871d9fe5af09acd3</cites><orcidid>0000-0003-4817-2875 ; 0000-0001-7311-9844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isprsjprs.2021.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03430200$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xuan</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Chen, Zhengchao</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Jia, Xiuping</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Li, Baipeng</creatorcontrib><creatorcontrib>Chen, Pan</creatorcontrib><title>An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery</title><title>ISPRS journal of photogrammetry and remote sensing</title><description>Semantic segmentation is an essential part of deep learning. In recent years, with the development of remote sensing big data, semantic segmentation has been increasingly used in remote sensing. Deep convolutional neural networks (DCNNs) face the challenge of feature fusion: very-high-resolution remote sensing image multisource data fusion can increase the network’s learnable information, which is conducive to correctly classifying target objects by DCNNs; simultaneously, the fusion of high-level abstract features and low-level spatial features can improve the classification accuracy at the border between target objects. In this paper, we propose a multipath encoder structure to extract features of multipath inputs, a multipath attention-fused block module to fuse multipath features, and a refinement attention-fused block module to fuse high-level abstract features and low-level spatial features. Furthermore, we propose a novel convolutional neural network architecture, named attention-fused network (AFNet). Based on our AFNet, we achieve state-of-the-art performance with an overall accuracy of 91.7% and a mean F1 score of 90.96% on the ISPRS Vaihingen 2D dataset and an overall accuracy of 92.1% and a mean F1 score of 93.44% on the ISPRS Potsdam 2D dataset.</description><subject>Attention-fused network</subject><subject>Convolutional neural network</subject><subject>Deep learning</subject><subject>Engineering Sciences</subject><subject>ISPRS</subject><subject>Semantic segmentation</subject><subject>Signal and Image processing</subject><subject>Very-high-resolution imagery</subject><issn>0924-2716</issn><issn>1872-8235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwG-iVQ4vTNm16rCa-pElc4BylqdOlrM2UdEP796QM7crBsmU_ry2_hNxTSCjQ4rFPjN8534dIUkhpAiwByC_IgvIyjXmasUuygCrN47SkxTW58b4HAMoKviCqHiM5TThOxo6x3ntsoxGnb-u-Im1d5HGQYaZC0Q2BkjMXWR0d0B3jjek2sUNvt_vfvsPBThjY0Zuxi8wgu4Ddkisttx7v_vKSfD4_faxe4_X7y9uqXscqy6spbhhVnGHKldKQlZlkbVUVmmVUN5LLvGw417xpUSksGihbXtK20sikhkqqNluSh9PejdyKnQvX3VFYacRrvRZzD7I8gxTgQANbnljlrPcO9VlAQcy-il6cfRWzrwKYCL4GZX1SYnjlYNAJrwyOClvjUE2itebfHT8LRolk</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Yang, Xuan</creator><creator>Li, Shanshan</creator><creator>Chen, Zhengchao</creator><creator>Chanussot, Jocelyn</creator><creator>Jia, Xiuping</creator><creator>Zhang, Bing</creator><creator>Li, Baipeng</creator><creator>Chen, Pan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0001-7311-9844</orcidid></search><sort><creationdate>20210701</creationdate><title>An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery</title><author>Yang, Xuan ; Li, Shanshan ; Chen, Zhengchao ; Chanussot, Jocelyn ; Jia, Xiuping ; Zhang, Bing ; Li, Baipeng ; Chen, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b51c85e28ccf0373a5d996f531fba8a47b88f8bdecce6b07d871d9fe5af09acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attention-fused network</topic><topic>Convolutional neural network</topic><topic>Deep learning</topic><topic>Engineering Sciences</topic><topic>ISPRS</topic><topic>Semantic segmentation</topic><topic>Signal and Image processing</topic><topic>Very-high-resolution imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xuan</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Chen, Zhengchao</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Jia, Xiuping</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Li, Baipeng</creatorcontrib><creatorcontrib>Chen, Pan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xuan</au><au>Li, Shanshan</au><au>Chen, Zhengchao</au><au>Chanussot, Jocelyn</au><au>Jia, Xiuping</au><au>Zhang, Bing</au><au>Li, Baipeng</au><au>Chen, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery</atitle><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>177</volume><spage>238</spage><epage>262</epage><pages>238-262</pages><issn>0924-2716</issn><eissn>1872-8235</eissn><abstract>Semantic segmentation is an essential part of deep learning. In recent years, with the development of remote sensing big data, semantic segmentation has been increasingly used in remote sensing. Deep convolutional neural networks (DCNNs) face the challenge of feature fusion: very-high-resolution remote sensing image multisource data fusion can increase the network’s learnable information, which is conducive to correctly classifying target objects by DCNNs; simultaneously, the fusion of high-level abstract features and low-level spatial features can improve the classification accuracy at the border between target objects. In this paper, we propose a multipath encoder structure to extract features of multipath inputs, a multipath attention-fused block module to fuse multipath features, and a refinement attention-fused block module to fuse high-level abstract features and low-level spatial features. Furthermore, we propose a novel convolutional neural network architecture, named attention-fused network (AFNet). Based on our AFNet, we achieve state-of-the-art performance with an overall accuracy of 91.7% and a mean F1 score of 90.96% on the ISPRS Vaihingen 2D dataset and an overall accuracy of 92.1% and a mean F1 score of 93.44% on the ISPRS Potsdam 2D dataset.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.isprsjprs.2021.05.004</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0001-7311-9844</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-2716 |
ispartof | ISPRS journal of photogrammetry and remote sensing, 2021-07, Vol.177, p.238-262 |
issn | 0924-2716 1872-8235 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03430200v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Attention-fused network Convolutional neural network Deep learning Engineering Sciences ISPRS Semantic segmentation Signal and Image processing Very-high-resolution imagery |
title | An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20attention-fused%20network%20for%20semantic%20segmentation%20of%20very-high-resolution%20remote%20sensing%20imagery&rft.jtitle=ISPRS%20journal%20of%20photogrammetry%20and%20remote%20sensing&rft.au=Yang,%20Xuan&rft.date=2021-07-01&rft.volume=177&rft.spage=238&rft.epage=262&rft.pages=238-262&rft.issn=0924-2716&rft.eissn=1872-8235&rft_id=info:doi/10.1016/j.isprsjprs.2021.05.004&rft_dat=%3Celsevier_hal_p%3ES0924271621001295%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0924271621001295&rfr_iscdi=true |