Temperature dependence of near-field radiative heat transfer above room temperature

Stefan-Boltzmann's law indicates that far-field blackbody radiation scales at the fourth power of temperature. The temperature dependence of radiative heat transfer in the near field is expected to be very different due to the contribution of evanescent waves. In this work, we experimentally ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today physics 2021-11, Vol.21, p.100562, Article 100562
Hauptverfasser: Lucchesi, C., Vaillon, R., Chapuis, P.-O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 100562
container_title Materials today physics
container_volume 21
creator Lucchesi, C.
Vaillon, R.
Chapuis, P.-O.
description Stefan-Boltzmann's law indicates that far-field blackbody radiation scales at the fourth power of temperature. The temperature dependence of radiative heat transfer in the near field is expected to be very different due to the contribution of evanescent waves. In this work, we experimentally observe such deviation on the radiative thermal conductance by bringing a hot micrometric sphere in the near-field of a room-temperature planar substrate, down to a separation distance of few tens of nanometers. The influence of materials is assessed by using either SiO2 or graphite spheres, and SiO2, graphite and InSb substrates. Temperature differences as large as 900 K are imposed. A maximum near-field radiative thermal conductance of about 70 nW K−1 is found for a graphite-graphite configuration. The experimental results demonstrate that the temperature exponent weakens in the near field, ranging from 2.2 to 4.1, depending on the gap distance and the materials. These results have broad consequences, in particular on the design of high-temperature nanoscale radiative energy devices. [Display omitted] •Stefan-Boltzmann's law is not anymore valid in the near field.•Thermal radiation is modified in the near field, not only according to distance but also to temperature.•The dependence on temperature weakens in the near field.•This dependence varies according to the materials involved.
doi_str_mv 10.1016/j.mtphys.2021.100562
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03429200v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2542529321002236</els_id><sourcerecordid>S2542529321002236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-7827d267b8eeb33cb3a4a86e49604aa951b9e77398fce93add76be50cb64b1a13</originalsourceid><addsrcrecordid>eNp9kE9Lw0AUxBdRsGi_gYe9ekjdP8kmuQilqBUKHqzn5e3uC93SJGV3LfTbmxBRT57eMMwMvB8hd5wtOOPqYb9o03F3jgvBBB8sVihxQWaiyEVWiFpe_tHXZB7jnjEmaiUUEzPyvsX2iAHSZ0Dq8Iidw84i7RvaIYSs8XhwNIDzkPwJ6Q4h0RSgiw0GCqYfvND3LU2_O7fkqoFDxPn3vSEfz0_b1TrbvL28rpabzMpKpaysROmEKk2FaKS0RkIOlcK8ViwHqAtuaixLWVeNxVqCc6UyWDBrVG44cHlD7qfdHRz0MfgWwln34PV6udGjx2QuasHYaczmU9aGPsaAzU-BMz1y1Hs9cdQjRz1xHGqPUw2HP04eg47Wj4CcD2iTdr3_f-ALzjd-Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature dependence of near-field radiative heat transfer above room temperature</title><source>Alma/SFX Local Collection</source><creator>Lucchesi, C. ; Vaillon, R. ; Chapuis, P.-O.</creator><creatorcontrib>Lucchesi, C. ; Vaillon, R. ; Chapuis, P.-O.</creatorcontrib><description>Stefan-Boltzmann's law indicates that far-field blackbody radiation scales at the fourth power of temperature. The temperature dependence of radiative heat transfer in the near field is expected to be very different due to the contribution of evanescent waves. In this work, we experimentally observe such deviation on the radiative thermal conductance by bringing a hot micrometric sphere in the near-field of a room-temperature planar substrate, down to a separation distance of few tens of nanometers. The influence of materials is assessed by using either SiO2 or graphite spheres, and SiO2, graphite and InSb substrates. Temperature differences as large as 900 K are imposed. A maximum near-field radiative thermal conductance of about 70 nW K−1 is found for a graphite-graphite configuration. The experimental results demonstrate that the temperature exponent weakens in the near field, ranging from 2.2 to 4.1, depending on the gap distance and the materials. These results have broad consequences, in particular on the design of high-temperature nanoscale radiative energy devices. [Display omitted] •Stefan-Boltzmann's law is not anymore valid in the near field.•Thermal radiation is modified in the near field, not only according to distance but also to temperature.•The dependence on temperature weakens in the near field.•This dependence varies according to the materials involved.</description><identifier>ISSN: 2542-5293</identifier><identifier>EISSN: 2542-5293</identifier><identifier>DOI: 10.1016/j.mtphys.2021.100562</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Engineering Sciences ; Mechanics ; Nanoscale ; Near-field ; Stefan-Boltzmann's law ; Thermal radiation ; Thermics</subject><ispartof>Materials today physics, 2021-11, Vol.21, p.100562, Article 100562</ispartof><rights>2021 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-7827d267b8eeb33cb3a4a86e49604aa951b9e77398fce93add76be50cb64b1a13</citedby><cites>FETCH-LOGICAL-c386t-7827d267b8eeb33cb3a4a86e49604aa951b9e77398fce93add76be50cb64b1a13</cites><orcidid>0000-0002-6264-2530 ; 0000-0002-8559-3604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03429200$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucchesi, C.</creatorcontrib><creatorcontrib>Vaillon, R.</creatorcontrib><creatorcontrib>Chapuis, P.-O.</creatorcontrib><title>Temperature dependence of near-field radiative heat transfer above room temperature</title><title>Materials today physics</title><description>Stefan-Boltzmann's law indicates that far-field blackbody radiation scales at the fourth power of temperature. The temperature dependence of radiative heat transfer in the near field is expected to be very different due to the contribution of evanescent waves. In this work, we experimentally observe such deviation on the radiative thermal conductance by bringing a hot micrometric sphere in the near-field of a room-temperature planar substrate, down to a separation distance of few tens of nanometers. The influence of materials is assessed by using either SiO2 or graphite spheres, and SiO2, graphite and InSb substrates. Temperature differences as large as 900 K are imposed. A maximum near-field radiative thermal conductance of about 70 nW K−1 is found for a graphite-graphite configuration. The experimental results demonstrate that the temperature exponent weakens in the near field, ranging from 2.2 to 4.1, depending on the gap distance and the materials. These results have broad consequences, in particular on the design of high-temperature nanoscale radiative energy devices. [Display omitted] •Stefan-Boltzmann's law is not anymore valid in the near field.•Thermal radiation is modified in the near field, not only according to distance but also to temperature.•The dependence on temperature weakens in the near field.•This dependence varies according to the materials involved.</description><subject>Engineering Sciences</subject><subject>Mechanics</subject><subject>Nanoscale</subject><subject>Near-field</subject><subject>Stefan-Boltzmann's law</subject><subject>Thermal radiation</subject><subject>Thermics</subject><issn>2542-5293</issn><issn>2542-5293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AUxBdRsGi_gYe9ekjdP8kmuQilqBUKHqzn5e3uC93SJGV3LfTbmxBRT57eMMwMvB8hd5wtOOPqYb9o03F3jgvBBB8sVihxQWaiyEVWiFpe_tHXZB7jnjEmaiUUEzPyvsX2iAHSZ0Dq8Iidw84i7RvaIYSs8XhwNIDzkPwJ6Q4h0RSgiw0GCqYfvND3LU2_O7fkqoFDxPn3vSEfz0_b1TrbvL28rpabzMpKpaysROmEKk2FaKS0RkIOlcK8ViwHqAtuaixLWVeNxVqCc6UyWDBrVG44cHlD7qfdHRz0MfgWwln34PV6udGjx2QuasHYaczmU9aGPsaAzU-BMz1y1Hs9cdQjRz1xHGqPUw2HP04eg47Wj4CcD2iTdr3_f-ALzjd-Sg</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Lucchesi, C.</creator><creator>Vaillon, R.</creator><creator>Chapuis, P.-O.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6264-2530</orcidid><orcidid>https://orcid.org/0000-0002-8559-3604</orcidid></search><sort><creationdate>202111</creationdate><title>Temperature dependence of near-field radiative heat transfer above room temperature</title><author>Lucchesi, C. ; Vaillon, R. ; Chapuis, P.-O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-7827d267b8eeb33cb3a4a86e49604aa951b9e77398fce93add76be50cb64b1a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering Sciences</topic><topic>Mechanics</topic><topic>Nanoscale</topic><topic>Near-field</topic><topic>Stefan-Boltzmann's law</topic><topic>Thermal radiation</topic><topic>Thermics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lucchesi, C.</creatorcontrib><creatorcontrib>Vaillon, R.</creatorcontrib><creatorcontrib>Chapuis, P.-O.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials today physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucchesi, C.</au><au>Vaillon, R.</au><au>Chapuis, P.-O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature dependence of near-field radiative heat transfer above room temperature</atitle><jtitle>Materials today physics</jtitle><date>2021-11</date><risdate>2021</risdate><volume>21</volume><spage>100562</spage><pages>100562-</pages><artnum>100562</artnum><issn>2542-5293</issn><eissn>2542-5293</eissn><abstract>Stefan-Boltzmann's law indicates that far-field blackbody radiation scales at the fourth power of temperature. The temperature dependence of radiative heat transfer in the near field is expected to be very different due to the contribution of evanescent waves. In this work, we experimentally observe such deviation on the radiative thermal conductance by bringing a hot micrometric sphere in the near-field of a room-temperature planar substrate, down to a separation distance of few tens of nanometers. The influence of materials is assessed by using either SiO2 or graphite spheres, and SiO2, graphite and InSb substrates. Temperature differences as large as 900 K are imposed. A maximum near-field radiative thermal conductance of about 70 nW K−1 is found for a graphite-graphite configuration. The experimental results demonstrate that the temperature exponent weakens in the near field, ranging from 2.2 to 4.1, depending on the gap distance and the materials. These results have broad consequences, in particular on the design of high-temperature nanoscale radiative energy devices. [Display omitted] •Stefan-Boltzmann's law is not anymore valid in the near field.•Thermal radiation is modified in the near field, not only according to distance but also to temperature.•The dependence on temperature weakens in the near field.•This dependence varies according to the materials involved.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mtphys.2021.100562</doi><orcidid>https://orcid.org/0000-0002-6264-2530</orcidid><orcidid>https://orcid.org/0000-0002-8559-3604</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2542-5293
ispartof Materials today physics, 2021-11, Vol.21, p.100562, Article 100562
issn 2542-5293
2542-5293
language eng
recordid cdi_hal_primary_oai_HAL_hal_03429200v1
source Alma/SFX Local Collection
subjects Engineering Sciences
Mechanics
Nanoscale
Near-field
Stefan-Boltzmann's law
Thermal radiation
Thermics
title Temperature dependence of near-field radiative heat transfer above room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20dependence%20of%20near-field%20radiative%20heat%20transfer%20above%20room%20temperature&rft.jtitle=Materials%20today%20physics&rft.au=Lucchesi,%20C.&rft.date=2021-11&rft.volume=21&rft.spage=100562&rft.pages=100562-&rft.artnum=100562&rft.issn=2542-5293&rft.eissn=2542-5293&rft_id=info:doi/10.1016/j.mtphys.2021.100562&rft_dat=%3Celsevier_hal_p%3ES2542529321002236%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2542529321002236&rfr_iscdi=true