Parasitism and host dispersal plasticity in an aquatic model system

Dispersal is a central determinant of spatial dynamics in communities and ecosystems, and various ecological factors can shape the evolution of constitutive and plastic dispersal behaviours. One important driver of dispersal plasticity is the biotic environment. Parasites, for example, influence the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolutionary biology 2021-08, Vol.34 (8), p.1316-1325
Hauptverfasser: Zilio, Giacomo, Nørgaard, Louise S., Petrucci, Giovanni, Zeballos, Nathalie, Gougat‐Barbera, Claire, Fronhofer, Emanuel A., Kaltz, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1325
container_issue 8
container_start_page 1316
container_title Journal of evolutionary biology
container_volume 34
creator Zilio, Giacomo
Nørgaard, Louise S.
Petrucci, Giovanni
Zeballos, Nathalie
Gougat‐Barbera, Claire
Fronhofer, Emanuel A.
Kaltz, Oliver
description Dispersal is a central determinant of spatial dynamics in communities and ecosystems, and various ecological factors can shape the evolution of constitutive and plastic dispersal behaviours. One important driver of dispersal plasticity is the biotic environment. Parasites, for example, influence the internal condition of infected hosts and define external patch quality. Thus, state‐dependent dispersal may be determined by infection status and context‐dependent dispersal by the abundance of infected hosts in the population. A prerequisite for such dispersal plasticity to evolve is a genetic basis on which natural selection can act. Using interconnected microcosms, we investigated dispersal in experimental populations of the freshwater protist Paramecium caudatum in response to the bacterial parasite Holospora undulata. For a collection of 20 natural host strains, we found substantial variation in constitutive dispersal and to a lesser degree in dispersal plasticity. First, infection tended to increase or decrease dispersal relative to uninfected controls, depending on strain identity, indicative of state‐dependent dispersal plasticity. Infection additionally decreased host swimming speed compared to the uninfected counterparts. Second, for certain strains, there was a weak negative association between dispersal and infection prevalence, such that uninfected hosts dispersed less when infection was more frequent in the population, indicating context‐dependent dispersal plasticity. Future experiments may test whether the observed differences in dispersal plasticity are sufficiently strong to be picked up by natural selection. The evolution of dispersal plasticity as a strategy to mitigate parasite effects spatially may have important implications for epidemiological dynamics. Dispersal plasticity may be advantageous in mitigating adverse interactions with parasites and may have important implications for epidemiological dynamics. Here we examined state‐ and context‐dependent dispersal plasticity in an aquatic model system. Parasite infection affected dispersal depending on the host strain identity (state‐dependent dispersal), and uninfected hosts tended to disperse less at higher infection prevalence (context‐dependent dispersal).
doi_str_mv 10.1111/jeb.13893
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03426187v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559412412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3993-fea0cbcfcb007e5dd1ac8b74852717a993aa33ee5daf2eeed42ffe2b5429f8993</originalsourceid><addsrcrecordid>eNp10M1LwzAUAPAiCs7pwf8g4EUP3ZI0WdvjHNMpAz0oeAuv7QvL6MeWtEr_ezMrCoIhkPDe7-XjBcEloxPmx3SL2YRFSRodBSMmOA1TRtmx31NGQzpjb6fBmXNbStlMSDkKFs9gwZnWuIpAXZBN41pSGLdD66AkuxJca3LT9sTUHhDYd-ADpGoKLInrXYvVeXCioXR48b2Og9e75ctiFa6f7h8W83WYR2kahRqB5lmu84zSGGVRMMiTLBaJ5DGLwROAKEKfAc0RsRBca-SZFDzViU-Pg5vh3A2UamdNBbZXDRi1mq_VIUYjwWcsid-Zt9eD3dlm36FrVWVcjmUJNTadU1wKIWTChfT06g_dNp2t_U-8kqlg3M_fy3PbOGdR_7yAUXVovfKtV1-t93Y62A9TYv8_VI_L26HiEyXIhIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559412412</pqid></control><display><type>article</type><title>Parasitism and host dispersal plasticity in an aquatic model system</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zilio, Giacomo ; Nørgaard, Louise S. ; Petrucci, Giovanni ; Zeballos, Nathalie ; Gougat‐Barbera, Claire ; Fronhofer, Emanuel A. ; Kaltz, Oliver</creator><creatorcontrib>Zilio, Giacomo ; Nørgaard, Louise S. ; Petrucci, Giovanni ; Zeballos, Nathalie ; Gougat‐Barbera, Claire ; Fronhofer, Emanuel A. ; Kaltz, Oliver</creatorcontrib><description>Dispersal is a central determinant of spatial dynamics in communities and ecosystems, and various ecological factors can shape the evolution of constitutive and plastic dispersal behaviours. One important driver of dispersal plasticity is the biotic environment. Parasites, for example, influence the internal condition of infected hosts and define external patch quality. Thus, state‐dependent dispersal may be determined by infection status and context‐dependent dispersal by the abundance of infected hosts in the population. A prerequisite for such dispersal plasticity to evolve is a genetic basis on which natural selection can act. Using interconnected microcosms, we investigated dispersal in experimental populations of the freshwater protist Paramecium caudatum in response to the bacterial parasite Holospora undulata. For a collection of 20 natural host strains, we found substantial variation in constitutive dispersal and to a lesser degree in dispersal plasticity. First, infection tended to increase or decrease dispersal relative to uninfected controls, depending on strain identity, indicative of state‐dependent dispersal plasticity. Infection additionally decreased host swimming speed compared to the uninfected counterparts. Second, for certain strains, there was a weak negative association between dispersal and infection prevalence, such that uninfected hosts dispersed less when infection was more frequent in the population, indicating context‐dependent dispersal plasticity. Future experiments may test whether the observed differences in dispersal plasticity are sufficiently strong to be picked up by natural selection. The evolution of dispersal plasticity as a strategy to mitigate parasite effects spatially may have important implications for epidemiological dynamics. Dispersal plasticity may be advantageous in mitigating adverse interactions with parasites and may have important implications for epidemiological dynamics. Here we examined state‐ and context‐dependent dispersal plasticity in an aquatic model system. Parasite infection affected dispersal depending on the host strain identity (state‐dependent dispersal), and uninfected hosts tended to disperse less at higher infection prevalence (context‐dependent dispersal).</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/jeb.13893</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>condition‐dependent dispersal ; Context ; Dispersal ; dispersal plasticity ; Dispersion ; eco‐evolution ; Epidemiology ; Holospora undulata ; host–parasite interactions ; Infections ; Life Sciences ; Microcosms ; Natural selection ; Paramecium caudatum ; Parasites ; Parasitism ; Plastic properties ; Plasticity ; reaction norms ; spatial dynamics ; Strains (organisms) ; Swimming</subject><ispartof>Journal of evolutionary biology, 2021-08, Vol.34 (8), p.1316-1325</ispartof><rights>2021 European Society for Evolutionary Biology</rights><rights>Journal of Evolutionary Biology © 2021 European Society For Evolutionary Biology</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3993-fea0cbcfcb007e5dd1ac8b74852717a993aa33ee5daf2eeed42ffe2b5429f8993</citedby><cites>FETCH-LOGICAL-c3993-fea0cbcfcb007e5dd1ac8b74852717a993aa33ee5daf2eeed42ffe2b5429f8993</cites><orcidid>0000-0002-4448-3118 ; 0000-0002-2219-784X ; 0000-0002-3828-6556 ; 0000-0002-0938-0017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjeb.13893$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjeb.13893$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-03426187$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zilio, Giacomo</creatorcontrib><creatorcontrib>Nørgaard, Louise S.</creatorcontrib><creatorcontrib>Petrucci, Giovanni</creatorcontrib><creatorcontrib>Zeballos, Nathalie</creatorcontrib><creatorcontrib>Gougat‐Barbera, Claire</creatorcontrib><creatorcontrib>Fronhofer, Emanuel A.</creatorcontrib><creatorcontrib>Kaltz, Oliver</creatorcontrib><title>Parasitism and host dispersal plasticity in an aquatic model system</title><title>Journal of evolutionary biology</title><description>Dispersal is a central determinant of spatial dynamics in communities and ecosystems, and various ecological factors can shape the evolution of constitutive and plastic dispersal behaviours. One important driver of dispersal plasticity is the biotic environment. Parasites, for example, influence the internal condition of infected hosts and define external patch quality. Thus, state‐dependent dispersal may be determined by infection status and context‐dependent dispersal by the abundance of infected hosts in the population. A prerequisite for such dispersal plasticity to evolve is a genetic basis on which natural selection can act. Using interconnected microcosms, we investigated dispersal in experimental populations of the freshwater protist Paramecium caudatum in response to the bacterial parasite Holospora undulata. For a collection of 20 natural host strains, we found substantial variation in constitutive dispersal and to a lesser degree in dispersal plasticity. First, infection tended to increase or decrease dispersal relative to uninfected controls, depending on strain identity, indicative of state‐dependent dispersal plasticity. Infection additionally decreased host swimming speed compared to the uninfected counterparts. Second, for certain strains, there was a weak negative association between dispersal and infection prevalence, such that uninfected hosts dispersed less when infection was more frequent in the population, indicating context‐dependent dispersal plasticity. Future experiments may test whether the observed differences in dispersal plasticity are sufficiently strong to be picked up by natural selection. The evolution of dispersal plasticity as a strategy to mitigate parasite effects spatially may have important implications for epidemiological dynamics. Dispersal plasticity may be advantageous in mitigating adverse interactions with parasites and may have important implications for epidemiological dynamics. Here we examined state‐ and context‐dependent dispersal plasticity in an aquatic model system. Parasite infection affected dispersal depending on the host strain identity (state‐dependent dispersal), and uninfected hosts tended to disperse less at higher infection prevalence (context‐dependent dispersal).</description><subject>condition‐dependent dispersal</subject><subject>Context</subject><subject>Dispersal</subject><subject>dispersal plasticity</subject><subject>Dispersion</subject><subject>eco‐evolution</subject><subject>Epidemiology</subject><subject>Holospora undulata</subject><subject>host–parasite interactions</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Microcosms</subject><subject>Natural selection</subject><subject>Paramecium caudatum</subject><subject>Parasites</subject><subject>Parasitism</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>reaction norms</subject><subject>spatial dynamics</subject><subject>Strains (organisms)</subject><subject>Swimming</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M1LwzAUAPAiCs7pwf8g4EUP3ZI0WdvjHNMpAz0oeAuv7QvL6MeWtEr_ezMrCoIhkPDe7-XjBcEloxPmx3SL2YRFSRodBSMmOA1TRtmx31NGQzpjb6fBmXNbStlMSDkKFs9gwZnWuIpAXZBN41pSGLdD66AkuxJca3LT9sTUHhDYd-ADpGoKLInrXYvVeXCioXR48b2Og9e75ctiFa6f7h8W83WYR2kahRqB5lmu84zSGGVRMMiTLBaJ5DGLwROAKEKfAc0RsRBca-SZFDzViU-Pg5vh3A2UamdNBbZXDRi1mq_VIUYjwWcsid-Zt9eD3dlm36FrVWVcjmUJNTadU1wKIWTChfT06g_dNp2t_U-8kqlg3M_fy3PbOGdR_7yAUXVovfKtV1-t93Y62A9TYv8_VI_L26HiEyXIhIg</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Zilio, Giacomo</creator><creator>Nørgaard, Louise S.</creator><creator>Petrucci, Giovanni</creator><creator>Zeballos, Nathalie</creator><creator>Gougat‐Barbera, Claire</creator><creator>Fronhofer, Emanuel A.</creator><creator>Kaltz, Oliver</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4448-3118</orcidid><orcidid>https://orcid.org/0000-0002-2219-784X</orcidid><orcidid>https://orcid.org/0000-0002-3828-6556</orcidid><orcidid>https://orcid.org/0000-0002-0938-0017</orcidid></search><sort><creationdate>202108</creationdate><title>Parasitism and host dispersal plasticity in an aquatic model system</title><author>Zilio, Giacomo ; Nørgaard, Louise S. ; Petrucci, Giovanni ; Zeballos, Nathalie ; Gougat‐Barbera, Claire ; Fronhofer, Emanuel A. ; Kaltz, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3993-fea0cbcfcb007e5dd1ac8b74852717a993aa33ee5daf2eeed42ffe2b5429f8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>condition‐dependent dispersal</topic><topic>Context</topic><topic>Dispersal</topic><topic>dispersal plasticity</topic><topic>Dispersion</topic><topic>eco‐evolution</topic><topic>Epidemiology</topic><topic>Holospora undulata</topic><topic>host–parasite interactions</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Microcosms</topic><topic>Natural selection</topic><topic>Paramecium caudatum</topic><topic>Parasites</topic><topic>Parasitism</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>reaction norms</topic><topic>spatial dynamics</topic><topic>Strains (organisms)</topic><topic>Swimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zilio, Giacomo</creatorcontrib><creatorcontrib>Nørgaard, Louise S.</creatorcontrib><creatorcontrib>Petrucci, Giovanni</creatorcontrib><creatorcontrib>Zeballos, Nathalie</creatorcontrib><creatorcontrib>Gougat‐Barbera, Claire</creatorcontrib><creatorcontrib>Fronhofer, Emanuel A.</creatorcontrib><creatorcontrib>Kaltz, Oliver</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zilio, Giacomo</au><au>Nørgaard, Louise S.</au><au>Petrucci, Giovanni</au><au>Zeballos, Nathalie</au><au>Gougat‐Barbera, Claire</au><au>Fronhofer, Emanuel A.</au><au>Kaltz, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parasitism and host dispersal plasticity in an aquatic model system</atitle><jtitle>Journal of evolutionary biology</jtitle><date>2021-08</date><risdate>2021</risdate><volume>34</volume><issue>8</issue><spage>1316</spage><epage>1325</epage><pages>1316-1325</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>Dispersal is a central determinant of spatial dynamics in communities and ecosystems, and various ecological factors can shape the evolution of constitutive and plastic dispersal behaviours. One important driver of dispersal plasticity is the biotic environment. Parasites, for example, influence the internal condition of infected hosts and define external patch quality. Thus, state‐dependent dispersal may be determined by infection status and context‐dependent dispersal by the abundance of infected hosts in the population. A prerequisite for such dispersal plasticity to evolve is a genetic basis on which natural selection can act. Using interconnected microcosms, we investigated dispersal in experimental populations of the freshwater protist Paramecium caudatum in response to the bacterial parasite Holospora undulata. For a collection of 20 natural host strains, we found substantial variation in constitutive dispersal and to a lesser degree in dispersal plasticity. First, infection tended to increase or decrease dispersal relative to uninfected controls, depending on strain identity, indicative of state‐dependent dispersal plasticity. Infection additionally decreased host swimming speed compared to the uninfected counterparts. Second, for certain strains, there was a weak negative association between dispersal and infection prevalence, such that uninfected hosts dispersed less when infection was more frequent in the population, indicating context‐dependent dispersal plasticity. Future experiments may test whether the observed differences in dispersal plasticity are sufficiently strong to be picked up by natural selection. The evolution of dispersal plasticity as a strategy to mitigate parasite effects spatially may have important implications for epidemiological dynamics. Dispersal plasticity may be advantageous in mitigating adverse interactions with parasites and may have important implications for epidemiological dynamics. Here we examined state‐ and context‐dependent dispersal plasticity in an aquatic model system. Parasite infection affected dispersal depending on the host strain identity (state‐dependent dispersal), and uninfected hosts tended to disperse less at higher infection prevalence (context‐dependent dispersal).</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jeb.13893</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4448-3118</orcidid><orcidid>https://orcid.org/0000-0002-2219-784X</orcidid><orcidid>https://orcid.org/0000-0002-3828-6556</orcidid><orcidid>https://orcid.org/0000-0002-0938-0017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1010-061X
ispartof Journal of evolutionary biology, 2021-08, Vol.34 (8), p.1316-1325
issn 1010-061X
1420-9101
language eng
recordid cdi_hal_primary_oai_HAL_hal_03426187v1
source Wiley Online Library Journals Frontfile Complete; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects condition‐dependent dispersal
Context
Dispersal
dispersal plasticity
Dispersion
eco‐evolution
Epidemiology
Holospora undulata
host–parasite interactions
Infections
Life Sciences
Microcosms
Natural selection
Paramecium caudatum
Parasites
Parasitism
Plastic properties
Plasticity
reaction norms
spatial dynamics
Strains (organisms)
Swimming
title Parasitism and host dispersal plasticity in an aquatic model system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parasitism%20and%20host%20dispersal%20plasticity%20in%20an%20aquatic%20model%20system&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=Zilio,%20Giacomo&rft.date=2021-08&rft.volume=34&rft.issue=8&rft.spage=1316&rft.epage=1325&rft.pages=1316-1325&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/jeb.13893&rft_dat=%3Cproquest_hal_p%3E2559412412%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559412412&rft_id=info:pmid/&rfr_iscdi=true