Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems
This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicate...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2020-12, Vol.102 (4), p.2669-2686 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2686 |
---|---|
container_issue | 4 |
container_start_page | 2669 |
container_title | Nonlinear dynamics |
container_volume | 102 |
creator | Trujillo, M. A. Aldana-López, R. Gómez-Gutiérrez, D. Defoort, M. Ruiz-León, J. Becerra, H. M. |
description | This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicated to the estimation of the leader state by each follower in a distributed way and in a fixed-time. Then, based on the estimate of the leader state, each follower computes its control law to track the leader in a fixed-time. In this paper, two control strategies are investigated and compared to solve the two mentioned steps. The first one is an autonomous protocol which ensures a fixed-time convergence for the observer and for the controller parts where the Upper Bound of the Settling-Time (UBST) is set a priory by the user. Then, the previous strategy is redesigned using time-varying gains to obtain a non-autonomous protocol. This enables to obtain less conservative estimates of the UBST while guaranteeing that the time-varying gains remain bounded. Some numerical examples show the effectiveness of the proposed consensus protocols. |
doi_str_mv | 10.1007/s11071-020-06075-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03423556v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473338514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6b1696f8577ffc3b9fa898a23cff84fb908e6fe9f71409cbd809dd38791f7b923</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeCJw_RSdI2yXERdYUFLwp7C2mbrF3aZE1adW--g2_ok9i1ojdPwwzf_zN8CJ0SuCAA_DISApxgoIAhB55hvocmJOMM01wu99EEJE0xSFgeoqMY1wDAKIgJqmd9551vfR8T7arEeYf138nWb6bCXd2apDG6MuHz_cP6pvGvJiSld9G4uMN8SKIZ9gr7MFBJ2zddjfXKuC6J29iZNh6jA6ubaE5-5hQ93lw_XM3x4v727mq2wCXLWIfzguQytyLj3NqSFdJqIYWmrLRWpLaQIExujbScpCDLohIgq4oJLonlhaRsis7H3ifdqE2oWx22yutazWcLtbsBSynLsvyFDOzZyG6Cf-5N7NTa98EN7ymacsaYyEg6UHSkyuBjDMb-1hJQO_1q1K8G_epbv-JDiI2hOMBuZcJf9T-pLySjir4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473338514</pqid></control><display><type>article</type><title>Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Trujillo, M. A. ; Aldana-López, R. ; Gómez-Gutiérrez, D. ; Defoort, M. ; Ruiz-León, J. ; Becerra, H. M.</creator><creatorcontrib>Trujillo, M. A. ; Aldana-López, R. ; Gómez-Gutiérrez, D. ; Defoort, M. ; Ruiz-León, J. ; Becerra, H. M.</creatorcontrib><description>This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicated to the estimation of the leader state by each follower in a distributed way and in a fixed-time. Then, based on the estimate of the leader state, each follower computes its control law to track the leader in a fixed-time. In this paper, two control strategies are investigated and compared to solve the two mentioned steps. The first one is an autonomous protocol which ensures a fixed-time convergence for the observer and for the controller parts where the Upper Bound of the Settling-Time (UBST) is set a priory by the user. Then, the previous strategy is redesigned using time-varying gains to obtain a non-autonomous protocol. This enables to obtain less conservative estimates of the UBST while guaranteeing that the time-varying gains remain bounded. Some numerical examples show the effectiveness of the proposed consensus protocols.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-06075-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automatic ; Automotive Engineering ; Classical Mechanics ; Control ; Control theory ; Convergence ; Double integrators ; Dynamical Systems ; Engineering ; Engineering Sciences ; Mechanical Engineering ; Multiagent systems ; Original Paper ; Upper bounds ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-12, Vol.102 (4), p.2669-2686</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6b1696f8577ffc3b9fa898a23cff84fb908e6fe9f71409cbd809dd38791f7b923</citedby><cites>FETCH-LOGICAL-c353t-6b1696f8577ffc3b9fa898a23cff84fb908e6fe9f71409cbd809dd38791f7b923</cites><orcidid>0000-0002-2977-6860 ; 0000-0002-2113-3369 ; 0000-0003-4257-382X ; 0000-0001-6346-0774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-06075-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-06075-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://uphf.hal.science/hal-03423556$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Trujillo, M. A.</creatorcontrib><creatorcontrib>Aldana-López, R.</creatorcontrib><creatorcontrib>Gómez-Gutiérrez, D.</creatorcontrib><creatorcontrib>Defoort, M.</creatorcontrib><creatorcontrib>Ruiz-León, J.</creatorcontrib><creatorcontrib>Becerra, H. M.</creatorcontrib><title>Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicated to the estimation of the leader state by each follower in a distributed way and in a fixed-time. Then, based on the estimate of the leader state, each follower computes its control law to track the leader in a fixed-time. In this paper, two control strategies are investigated and compared to solve the two mentioned steps. The first one is an autonomous protocol which ensures a fixed-time convergence for the observer and for the controller parts where the Upper Bound of the Settling-Time (UBST) is set a priory by the user. Then, the previous strategy is redesigned using time-varying gains to obtain a non-autonomous protocol. This enables to obtain less conservative estimates of the UBST while guaranteeing that the time-varying gains remain bounded. Some numerical examples show the effectiveness of the proposed consensus protocols.</description><subject>Automatic</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Double integrators</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Mechanical Engineering</subject><subject>Multiagent systems</subject><subject>Original Paper</subject><subject>Upper bounds</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFKxDAQhoMouK6-gKeCJw_RSdI2yXERdYUFLwp7C2mbrF3aZE1adW--g2_ok9i1ojdPwwzf_zN8CJ0SuCAA_DISApxgoIAhB55hvocmJOMM01wu99EEJE0xSFgeoqMY1wDAKIgJqmd9551vfR8T7arEeYf138nWb6bCXd2apDG6MuHz_cP6pvGvJiSld9G4uMN8SKIZ9gr7MFBJ2zddjfXKuC6J29iZNh6jA6ubaE5-5hQ93lw_XM3x4v727mq2wCXLWIfzguQytyLj3NqSFdJqIYWmrLRWpLaQIExujbScpCDLohIgq4oJLonlhaRsis7H3ifdqE2oWx22yutazWcLtbsBSynLsvyFDOzZyG6Cf-5N7NTa98EN7ymacsaYyEg6UHSkyuBjDMb-1hJQO_1q1K8G_epbv-JDiI2hOMBuZcJf9T-pLySjir4</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Trujillo, M. A.</creator><creator>Aldana-López, R.</creator><creator>Gómez-Gutiérrez, D.</creator><creator>Defoort, M.</creator><creator>Ruiz-León, J.</creator><creator>Becerra, H. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2977-6860</orcidid><orcidid>https://orcid.org/0000-0002-2113-3369</orcidid><orcidid>https://orcid.org/0000-0003-4257-382X</orcidid><orcidid>https://orcid.org/0000-0001-6346-0774</orcidid></search><sort><creationdate>20201201</creationdate><title>Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems</title><author>Trujillo, M. A. ; Aldana-López, R. ; Gómez-Gutiérrez, D. ; Defoort, M. ; Ruiz-León, J. ; Becerra, H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6b1696f8577ffc3b9fa898a23cff84fb908e6fe9f71409cbd809dd38791f7b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Double integrators</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Mechanical Engineering</topic><topic>Multiagent systems</topic><topic>Original Paper</topic><topic>Upper bounds</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trujillo, M. A.</creatorcontrib><creatorcontrib>Aldana-López, R.</creatorcontrib><creatorcontrib>Gómez-Gutiérrez, D.</creatorcontrib><creatorcontrib>Defoort, M.</creatorcontrib><creatorcontrib>Ruiz-León, J.</creatorcontrib><creatorcontrib>Becerra, H. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trujillo, M. A.</au><au>Aldana-López, R.</au><au>Gómez-Gutiérrez, D.</au><au>Defoort, M.</au><au>Ruiz-León, J.</au><au>Becerra, H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>102</volume><issue>4</issue><spage>2669</spage><epage>2686</epage><pages>2669-2686</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicated to the estimation of the leader state by each follower in a distributed way and in a fixed-time. Then, based on the estimate of the leader state, each follower computes its control law to track the leader in a fixed-time. In this paper, two control strategies are investigated and compared to solve the two mentioned steps. The first one is an autonomous protocol which ensures a fixed-time convergence for the observer and for the controller parts where the Upper Bound of the Settling-Time (UBST) is set a priory by the user. Then, the previous strategy is redesigned using time-varying gains to obtain a non-autonomous protocol. This enables to obtain less conservative estimates of the UBST while guaranteeing that the time-varying gains remain bounded. Some numerical examples show the effectiveness of the proposed consensus protocols.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-06075-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2977-6860</orcidid><orcidid>https://orcid.org/0000-0002-2113-3369</orcidid><orcidid>https://orcid.org/0000-0003-4257-382X</orcidid><orcidid>https://orcid.org/0000-0001-6346-0774</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2020-12, Vol.102 (4), p.2669-2686 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03423556v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automatic Automotive Engineering Classical Mechanics Control Control theory Convergence Double integrators Dynamical Systems Engineering Engineering Sciences Mechanical Engineering Multiagent systems Original Paper Upper bounds Vibration |
title | Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20and%20non-autonomous%20fixed-time%20leader%E2%80%93follower%20consensus%20for%20second-order%20multi-agent%20systems&rft.jtitle=Nonlinear%20dynamics&rft.au=Trujillo,%20M.%20A.&rft.date=2020-12-01&rft.volume=102&rft.issue=4&rft.spage=2669&rft.epage=2686&rft.pages=2669-2686&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-06075-7&rft_dat=%3Cproquest_hal_p%3E2473338514%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473338514&rft_id=info:pmid/&rfr_iscdi=true |