Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems

This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-12, Vol.102 (4), p.2669-2686
Hauptverfasser: Trujillo, M. A., Aldana-López, R., Gómez-Gutiérrez, D., Defoort, M., Ruiz-León, J., Becerra, H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2686
container_issue 4
container_start_page 2669
container_title Nonlinear dynamics
container_volume 102
creator Trujillo, M. A.
Aldana-López, R.
Gómez-Gutiérrez, D.
Defoort, M.
Ruiz-León, J.
Becerra, H. M.
description This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicated to the estimation of the leader state by each follower in a distributed way and in a fixed-time. Then, based on the estimate of the leader state, each follower computes its control law to track the leader in a fixed-time. In this paper, two control strategies are investigated and compared to solve the two mentioned steps. The first one is an autonomous protocol which ensures a fixed-time convergence for the observer and for the controller parts where the Upper Bound of the Settling-Time (UBST) is set a priory by the user. Then, the previous strategy is redesigned using time-varying gains to obtain a non-autonomous protocol. This enables to obtain less conservative estimates of the UBST while guaranteeing that the time-varying gains remain bounded. Some numerical examples show the effectiveness of the proposed consensus protocols.
doi_str_mv 10.1007/s11071-020-06075-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03423556v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473338514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6b1696f8577ffc3b9fa898a23cff84fb908e6fe9f71409cbd809dd38791f7b923</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeCJw_RSdI2yXERdYUFLwp7C2mbrF3aZE1adW--g2_ok9i1ojdPwwzf_zN8CJ0SuCAA_DISApxgoIAhB55hvocmJOMM01wu99EEJE0xSFgeoqMY1wDAKIgJqmd9551vfR8T7arEeYf138nWb6bCXd2apDG6MuHz_cP6pvGvJiSld9G4uMN8SKIZ9gr7MFBJ2zddjfXKuC6J29iZNh6jA6ubaE5-5hQ93lw_XM3x4v727mq2wCXLWIfzguQytyLj3NqSFdJqIYWmrLRWpLaQIExujbScpCDLohIgq4oJLonlhaRsis7H3ifdqE2oWx22yutazWcLtbsBSynLsvyFDOzZyG6Cf-5N7NTa98EN7ymacsaYyEg6UHSkyuBjDMb-1hJQO_1q1K8G_epbv-JDiI2hOMBuZcJf9T-pLySjir4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473338514</pqid></control><display><type>article</type><title>Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Trujillo, M. A. ; Aldana-López, R. ; Gómez-Gutiérrez, D. ; Defoort, M. ; Ruiz-León, J. ; Becerra, H. M.</creator><creatorcontrib>Trujillo, M. A. ; Aldana-López, R. ; Gómez-Gutiérrez, D. ; Defoort, M. ; Ruiz-León, J. ; Becerra, H. M.</creatorcontrib><description>This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicated to the estimation of the leader state by each follower in a distributed way and in a fixed-time. Then, based on the estimate of the leader state, each follower computes its control law to track the leader in a fixed-time. In this paper, two control strategies are investigated and compared to solve the two mentioned steps. The first one is an autonomous protocol which ensures a fixed-time convergence for the observer and for the controller parts where the Upper Bound of the Settling-Time (UBST) is set a priory by the user. Then, the previous strategy is redesigned using time-varying gains to obtain a non-autonomous protocol. This enables to obtain less conservative estimates of the UBST while guaranteeing that the time-varying gains remain bounded. Some numerical examples show the effectiveness of the proposed consensus protocols.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-06075-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automatic ; Automotive Engineering ; Classical Mechanics ; Control ; Control theory ; Convergence ; Double integrators ; Dynamical Systems ; Engineering ; Engineering Sciences ; Mechanical Engineering ; Multiagent systems ; Original Paper ; Upper bounds ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-12, Vol.102 (4), p.2669-2686</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6b1696f8577ffc3b9fa898a23cff84fb908e6fe9f71409cbd809dd38791f7b923</citedby><cites>FETCH-LOGICAL-c353t-6b1696f8577ffc3b9fa898a23cff84fb908e6fe9f71409cbd809dd38791f7b923</cites><orcidid>0000-0002-2977-6860 ; 0000-0002-2113-3369 ; 0000-0003-4257-382X ; 0000-0001-6346-0774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-06075-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-06075-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://uphf.hal.science/hal-03423556$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Trujillo, M. A.</creatorcontrib><creatorcontrib>Aldana-López, R.</creatorcontrib><creatorcontrib>Gómez-Gutiérrez, D.</creatorcontrib><creatorcontrib>Defoort, M.</creatorcontrib><creatorcontrib>Ruiz-León, J.</creatorcontrib><creatorcontrib>Becerra, H. M.</creatorcontrib><title>Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicated to the estimation of the leader state by each follower in a distributed way and in a fixed-time. Then, based on the estimate of the leader state, each follower computes its control law to track the leader in a fixed-time. In this paper, two control strategies are investigated and compared to solve the two mentioned steps. The first one is an autonomous protocol which ensures a fixed-time convergence for the observer and for the controller parts where the Upper Bound of the Settling-Time (UBST) is set a priory by the user. Then, the previous strategy is redesigned using time-varying gains to obtain a non-autonomous protocol. This enables to obtain less conservative estimates of the UBST while guaranteeing that the time-varying gains remain bounded. Some numerical examples show the effectiveness of the proposed consensus protocols.</description><subject>Automatic</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Double integrators</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Mechanical Engineering</subject><subject>Multiagent systems</subject><subject>Original Paper</subject><subject>Upper bounds</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFKxDAQhoMouK6-gKeCJw_RSdI2yXERdYUFLwp7C2mbrF3aZE1adW--g2_ok9i1ojdPwwzf_zN8CJ0SuCAA_DISApxgoIAhB55hvocmJOMM01wu99EEJE0xSFgeoqMY1wDAKIgJqmd9551vfR8T7arEeYf138nWb6bCXd2apDG6MuHz_cP6pvGvJiSld9G4uMN8SKIZ9gr7MFBJ2zddjfXKuC6J29iZNh6jA6ubaE5-5hQ93lw_XM3x4v727mq2wCXLWIfzguQytyLj3NqSFdJqIYWmrLRWpLaQIExujbScpCDLohIgq4oJLonlhaRsis7H3ifdqE2oWx22yutazWcLtbsBSynLsvyFDOzZyG6Cf-5N7NTa98EN7ymacsaYyEg6UHSkyuBjDMb-1hJQO_1q1K8G_epbv-JDiI2hOMBuZcJf9T-pLySjir4</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Trujillo, M. A.</creator><creator>Aldana-López, R.</creator><creator>Gómez-Gutiérrez, D.</creator><creator>Defoort, M.</creator><creator>Ruiz-León, J.</creator><creator>Becerra, H. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2977-6860</orcidid><orcidid>https://orcid.org/0000-0002-2113-3369</orcidid><orcidid>https://orcid.org/0000-0003-4257-382X</orcidid><orcidid>https://orcid.org/0000-0001-6346-0774</orcidid></search><sort><creationdate>20201201</creationdate><title>Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems</title><author>Trujillo, M. A. ; Aldana-López, R. ; Gómez-Gutiérrez, D. ; Defoort, M. ; Ruiz-León, J. ; Becerra, H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6b1696f8577ffc3b9fa898a23cff84fb908e6fe9f71409cbd809dd38791f7b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Double integrators</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Mechanical Engineering</topic><topic>Multiagent systems</topic><topic>Original Paper</topic><topic>Upper bounds</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trujillo, M. A.</creatorcontrib><creatorcontrib>Aldana-López, R.</creatorcontrib><creatorcontrib>Gómez-Gutiérrez, D.</creatorcontrib><creatorcontrib>Defoort, M.</creatorcontrib><creatorcontrib>Ruiz-León, J.</creatorcontrib><creatorcontrib>Becerra, H. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trujillo, M. A.</au><au>Aldana-López, R.</au><au>Gómez-Gutiérrez, D.</au><au>Defoort, M.</au><au>Ruiz-León, J.</au><au>Becerra, H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>102</volume><issue>4</issue><spage>2669</spage><epage>2686</epage><pages>2669-2686</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper addresses the problem of consensus tracking with fixed-time convergence, for leader–follower multi-agent systems with double-integrator dynamics, where only a subset of followers has access to the state of the leader. The control scheme is divided into two steps. The first one is dedicated to the estimation of the leader state by each follower in a distributed way and in a fixed-time. Then, based on the estimate of the leader state, each follower computes its control law to track the leader in a fixed-time. In this paper, two control strategies are investigated and compared to solve the two mentioned steps. The first one is an autonomous protocol which ensures a fixed-time convergence for the observer and for the controller parts where the Upper Bound of the Settling-Time (UBST) is set a priory by the user. Then, the previous strategy is redesigned using time-varying gains to obtain a non-autonomous protocol. This enables to obtain less conservative estimates of the UBST while guaranteeing that the time-varying gains remain bounded. Some numerical examples show the effectiveness of the proposed consensus protocols.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-06075-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2977-6860</orcidid><orcidid>https://orcid.org/0000-0002-2113-3369</orcidid><orcidid>https://orcid.org/0000-0003-4257-382X</orcidid><orcidid>https://orcid.org/0000-0001-6346-0774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2020-12, Vol.102 (4), p.2669-2686
issn 0924-090X
1573-269X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03423556v1
source SpringerLink Journals - AutoHoldings
subjects Automatic
Automotive Engineering
Classical Mechanics
Control
Control theory
Convergence
Double integrators
Dynamical Systems
Engineering
Engineering Sciences
Mechanical Engineering
Multiagent systems
Original Paper
Upper bounds
Vibration
title Autonomous and non-autonomous fixed-time leader–follower consensus for second-order multi-agent systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20and%20non-autonomous%20fixed-time%20leader%E2%80%93follower%20consensus%20for%20second-order%20multi-agent%20systems&rft.jtitle=Nonlinear%20dynamics&rft.au=Trujillo,%20M.%20A.&rft.date=2020-12-01&rft.volume=102&rft.issue=4&rft.spage=2669&rft.epage=2686&rft.pages=2669-2686&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-06075-7&rft_dat=%3Cproquest_hal_p%3E2473338514%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473338514&rft_id=info:pmid/&rfr_iscdi=true