Non-invasive hydrodynamic imaging in plant roots at cellular resolution
A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelling, can achieve this goal - monitoring hydrodynami...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-08, Vol.12 (1), p.4682-4682, Article 4682 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelling, can achieve this goal - monitoring hydrodynamics within living root tissues at cell- and sub-second-scale resolutions. Raman imaging of water-transporting xylem vessels in
Arabidopsis thaliana
mutant roots reveals faster xylem water transport in endodermal diffusion barrier mutants. Furthermore, transverse line scans across the root suggest water transported via the root xylem does not re-enter outer root tissues nor the surrounding soil when
en-route
to shoot tissues if endodermal diffusion barriers are intact, thereby separating ‘two water worlds’.
Existing methods for non-invasively monitoring water flow in plants have limited spatial/temporal resolution. Here, the authors report that Raman microspectroscopy, complemented by hydrodynamic modelling, can monitor hydrodynamics within living root tissues at cell- and sub-second-scale resolutions. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-24913-z |