Freezing-damped impact of a water drop

We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2020-10, Vol.132 (2), p.24002
Hauptverfasser: Thiévenaz, Virgile, Séon, Thomas, Josserand, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 24002
container_title Europhysics letters
container_volume 132
creator Thiévenaz, Virgile
Séon, Thomas
Josserand, Christophe
description We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber numbers, we show that lowering the surface temperature reduces the drop maximal extent. Using an analogy between this ice layer and the viscous boundary layer, which also grows during the spreading, we are able to model the effect of freezing as an effective viscosity. The scaling laws designed for viscous drop impact can therefore be applied to such a solidification problem, avoiding the recourse to a full and complex modelling of the thermal dynamics.
doi_str_mv 10.1209/0295-5075/132/24002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03414793v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110114490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-c190d789c668bdda0a9bf6a5be6785767f33952795277c489d2e04e7a94bf6363</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKtP4GZAUFyMc_M_WZZirVBwo-uQTjI6pW1iZqro05txpG7ERbgQzvdx70HoHMMNJqAKIIrnHCQvMCUFYQDkAI0wKUXOSs4O0WhPHKOTtl0BYFxiMUKXs-jcZ7N9zq3ZBGezZhNM1WW-zkz2bjoXMxt9OEVHtVm37uxnjtHT7PZxOs8XD3f308kir5iQXV5hBVaWqhKiXFprwKhlLQxfOiFLLoWsKVWcyP7JipXKEgfMSaNY4qigY3Q99L6YtQ6x2Zj4ob1p9Hyy0P0fUIaZVPQNJ_ZiYEP0rzvXdnrld3Gb1tMU43QgYwoSRQeqir5to6v3tRh0L0_3anSvRid5-lteShVDqvHht_b_xNUfCRfWAzNQOtiafgHFlHjY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110114490</pqid></control><display><type>article</type><title>Freezing-damped impact of a water drop</title><source>IOP Publishing Journals</source><creator>Thiévenaz, Virgile ; Séon, Thomas ; Josserand, Christophe</creator><creatorcontrib>Thiévenaz, Virgile ; Séon, Thomas ; Josserand, Christophe</creatorcontrib><description>We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber numbers, we show that lowering the surface temperature reduces the drop maximal extent. Using an analogy between this ice layer and the viscous boundary layer, which also grows during the spreading, we are able to model the effect of freezing as an effective viscosity. The scaling laws designed for viscous drop impact can therefore be applied to such a solidification problem, avoiding the recourse to a full and complex modelling of the thermal dynamics.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/132/24002</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>Boundary layers ; Cold surfaces ; Fluid mechanics ; Freezing ; Mechanics ; Physics ; Scaling laws ; Solidification ; Water drops</subject><ispartof>Europhysics letters, 2020-10, Vol.132 (2), p.24002</ispartof><rights>Copyright © 2020 EPLA</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-c190d789c668bdda0a9bf6a5be6785767f33952795277c489d2e04e7a94bf6363</citedby><cites>FETCH-LOGICAL-c467t-c190d789c668bdda0a9bf6a5be6785767f33952795277c489d2e04e7a94bf6363</cites><orcidid>0000-0002-4756-2946 ; 0000-0001-6728-6072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/132/24002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03414793$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiévenaz, Virgile</creatorcontrib><creatorcontrib>Séon, Thomas</creatorcontrib><creatorcontrib>Josserand, Christophe</creatorcontrib><title>Freezing-damped impact of a water drop</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber numbers, we show that lowering the surface temperature reduces the drop maximal extent. Using an analogy between this ice layer and the viscous boundary layer, which also grows during the spreading, we are able to model the effect of freezing as an effective viscosity. The scaling laws designed for viscous drop impact can therefore be applied to such a solidification problem, avoiding the recourse to a full and complex modelling of the thermal dynamics.</description><subject>Boundary layers</subject><subject>Cold surfaces</subject><subject>Fluid mechanics</subject><subject>Freezing</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Scaling laws</subject><subject>Solidification</subject><subject>Water drops</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKtP4GZAUFyMc_M_WZZirVBwo-uQTjI6pW1iZqro05txpG7ERbgQzvdx70HoHMMNJqAKIIrnHCQvMCUFYQDkAI0wKUXOSs4O0WhPHKOTtl0BYFxiMUKXs-jcZ7N9zq3ZBGezZhNM1WW-zkz2bjoXMxt9OEVHtVm37uxnjtHT7PZxOs8XD3f308kir5iQXV5hBVaWqhKiXFprwKhlLQxfOiFLLoWsKVWcyP7JipXKEgfMSaNY4qigY3Q99L6YtQ6x2Zj4ob1p9Hyy0P0fUIaZVPQNJ_ZiYEP0rzvXdnrld3Gb1tMU43QgYwoSRQeqir5to6v3tRh0L0_3anSvRid5-lteShVDqvHht_b_xNUfCRfWAzNQOtiafgHFlHjY</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Thiévenaz, Virgile</creator><creator>Séon, Thomas</creator><creator>Josserand, Christophe</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><general>European Physical Society / EDP Sciences / Società Italiana di Fisica / IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4756-2946</orcidid><orcidid>https://orcid.org/0000-0001-6728-6072</orcidid></search><sort><creationdate>20201001</creationdate><title>Freezing-damped impact of a water drop</title><author>Thiévenaz, Virgile ; Séon, Thomas ; Josserand, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-c190d789c668bdda0a9bf6a5be6785767f33952795277c489d2e04e7a94bf6363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary layers</topic><topic>Cold surfaces</topic><topic>Fluid mechanics</topic><topic>Freezing</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Scaling laws</topic><topic>Solidification</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiévenaz, Virgile</creatorcontrib><creatorcontrib>Séon, Thomas</creatorcontrib><creatorcontrib>Josserand, Christophe</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiévenaz, Virgile</au><au>Séon, Thomas</au><au>Josserand, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freezing-damped impact of a water drop</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>132</volume><issue>2</issue><spage>24002</spage><pages>24002-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber numbers, we show that lowering the surface temperature reduces the drop maximal extent. Using an analogy between this ice layer and the viscous boundary layer, which also grows during the spreading, we are able to model the effect of freezing as an effective viscosity. The scaling laws designed for viscous drop impact can therefore be applied to such a solidification problem, avoiding the recourse to a full and complex modelling of the thermal dynamics.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/132/24002</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4756-2946</orcidid><orcidid>https://orcid.org/0000-0001-6728-6072</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2020-10, Vol.132 (2), p.24002
issn 0295-5075
1286-4854
language eng
recordid cdi_hal_primary_oai_HAL_hal_03414793v1
source IOP Publishing Journals
subjects Boundary layers
Cold surfaces
Fluid mechanics
Freezing
Mechanics
Physics
Scaling laws
Solidification
Water drops
title Freezing-damped impact of a water drop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freezing-damped%20impact%20of%20a%20water%20drop&rft.jtitle=Europhysics%20letters&rft.au=Thi%C3%A9venaz,%20Virgile&rft.date=2020-10-01&rft.volume=132&rft.issue=2&rft.spage=24002&rft.pages=24002-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/132/24002&rft_dat=%3Cproquest_hal_p%3E3110114490%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110114490&rft_id=info:pmid/&rfr_iscdi=true