Freezing-damped impact of a water drop
We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber num...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2020-10, Vol.132 (2), p.24002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 24002 |
container_title | Europhysics letters |
container_volume | 132 |
creator | Thiévenaz, Virgile Séon, Thomas Josserand, Christophe |
description | We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber numbers, we show that lowering the surface temperature reduces the drop maximal extent. Using an analogy between this ice layer and the viscous boundary layer, which also grows during the spreading, we are able to model the effect of freezing as an effective viscosity. The scaling laws designed for viscous drop impact can therefore be applied to such a solidification problem, avoiding the recourse to a full and complex modelling of the thermal dynamics. |
doi_str_mv | 10.1209/0295-5075/132/24002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03414793v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110114490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-c190d789c668bdda0a9bf6a5be6785767f33952795277c489d2e04e7a94bf6363</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKtP4GZAUFyMc_M_WZZirVBwo-uQTjI6pW1iZqro05txpG7ERbgQzvdx70HoHMMNJqAKIIrnHCQvMCUFYQDkAI0wKUXOSs4O0WhPHKOTtl0BYFxiMUKXs-jcZ7N9zq3ZBGezZhNM1WW-zkz2bjoXMxt9OEVHtVm37uxnjtHT7PZxOs8XD3f308kir5iQXV5hBVaWqhKiXFprwKhlLQxfOiFLLoWsKVWcyP7JipXKEgfMSaNY4qigY3Q99L6YtQ6x2Zj4ob1p9Hyy0P0fUIaZVPQNJ_ZiYEP0rzvXdnrld3Gb1tMU43QgYwoSRQeqir5to6v3tRh0L0_3anSvRid5-lteShVDqvHht_b_xNUfCRfWAzNQOtiafgHFlHjY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110114490</pqid></control><display><type>article</type><title>Freezing-damped impact of a water drop</title><source>IOP Publishing Journals</source><creator>Thiévenaz, Virgile ; Séon, Thomas ; Josserand, Christophe</creator><creatorcontrib>Thiévenaz, Virgile ; Séon, Thomas ; Josserand, Christophe</creatorcontrib><description>We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber numbers, we show that lowering the surface temperature reduces the drop maximal extent. Using an analogy between this ice layer and the viscous boundary layer, which also grows during the spreading, we are able to model the effect of freezing as an effective viscosity. The scaling laws designed for viscous drop impact can therefore be applied to such a solidification problem, avoiding the recourse to a full and complex modelling of the thermal dynamics.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/132/24002</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>Boundary layers ; Cold surfaces ; Fluid mechanics ; Freezing ; Mechanics ; Physics ; Scaling laws ; Solidification ; Water drops</subject><ispartof>Europhysics letters, 2020-10, Vol.132 (2), p.24002</ispartof><rights>Copyright © 2020 EPLA</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-c190d789c668bdda0a9bf6a5be6785767f33952795277c489d2e04e7a94bf6363</citedby><cites>FETCH-LOGICAL-c467t-c190d789c668bdda0a9bf6a5be6785767f33952795277c489d2e04e7a94bf6363</cites><orcidid>0000-0002-4756-2946 ; 0000-0001-6728-6072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/132/24002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03414793$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiévenaz, Virgile</creatorcontrib><creatorcontrib>Séon, Thomas</creatorcontrib><creatorcontrib>Josserand, Christophe</creatorcontrib><title>Freezing-damped impact of a water drop</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber numbers, we show that lowering the surface temperature reduces the drop maximal extent. Using an analogy between this ice layer and the viscous boundary layer, which also grows during the spreading, we are able to model the effect of freezing as an effective viscosity. The scaling laws designed for viscous drop impact can therefore be applied to such a solidification problem, avoiding the recourse to a full and complex modelling of the thermal dynamics.</description><subject>Boundary layers</subject><subject>Cold surfaces</subject><subject>Fluid mechanics</subject><subject>Freezing</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Scaling laws</subject><subject>Solidification</subject><subject>Water drops</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKtP4GZAUFyMc_M_WZZirVBwo-uQTjI6pW1iZqro05txpG7ERbgQzvdx70HoHMMNJqAKIIrnHCQvMCUFYQDkAI0wKUXOSs4O0WhPHKOTtl0BYFxiMUKXs-jcZ7N9zq3ZBGezZhNM1WW-zkz2bjoXMxt9OEVHtVm37uxnjtHT7PZxOs8XD3f308kir5iQXV5hBVaWqhKiXFprwKhlLQxfOiFLLoWsKVWcyP7JipXKEgfMSaNY4qigY3Q99L6YtQ6x2Zj4ob1p9Hyy0P0fUIaZVPQNJ_ZiYEP0rzvXdnrld3Gb1tMU43QgYwoSRQeqir5to6v3tRh0L0_3anSvRid5-lteShVDqvHht_b_xNUfCRfWAzNQOtiafgHFlHjY</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Thiévenaz, Virgile</creator><creator>Séon, Thomas</creator><creator>Josserand, Christophe</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><general>European Physical Society / EDP Sciences / Società Italiana di Fisica / IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4756-2946</orcidid><orcidid>https://orcid.org/0000-0001-6728-6072</orcidid></search><sort><creationdate>20201001</creationdate><title>Freezing-damped impact of a water drop</title><author>Thiévenaz, Virgile ; Séon, Thomas ; Josserand, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-c190d789c668bdda0a9bf6a5be6785767f33952795277c489d2e04e7a94bf6363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary layers</topic><topic>Cold surfaces</topic><topic>Fluid mechanics</topic><topic>Freezing</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Scaling laws</topic><topic>Solidification</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiévenaz, Virgile</creatorcontrib><creatorcontrib>Séon, Thomas</creatorcontrib><creatorcontrib>Josserand, Christophe</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiévenaz, Virgile</au><au>Séon, Thomas</au><au>Josserand, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freezing-damped impact of a water drop</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>132</volume><issue>2</issue><spage>24002</spage><pages>24002-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>We experimentally investigate the effect of freezing on the spreading of a water drop. Whenever a water drop impacts a cold surface, whose temperature is lower than 0 °C, a thin layer of ice grows during the spreading. This freezing has a notable effect on the impact: at given Reynolds and Weber numbers, we show that lowering the surface temperature reduces the drop maximal extent. Using an analogy between this ice layer and the viscous boundary layer, which also grows during the spreading, we are able to model the effect of freezing as an effective viscosity. The scaling laws designed for viscous drop impact can therefore be applied to such a solidification problem, avoiding the recourse to a full and complex modelling of the thermal dynamics.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/132/24002</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4756-2946</orcidid><orcidid>https://orcid.org/0000-0001-6728-6072</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2020-10, Vol.132 (2), p.24002 |
issn | 0295-5075 1286-4854 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03414793v1 |
source | IOP Publishing Journals |
subjects | Boundary layers Cold surfaces Fluid mechanics Freezing Mechanics Physics Scaling laws Solidification Water drops |
title | Freezing-damped impact of a water drop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freezing-damped%20impact%20of%20a%20water%20drop&rft.jtitle=Europhysics%20letters&rft.au=Thi%C3%A9venaz,%20Virgile&rft.date=2020-10-01&rft.volume=132&rft.issue=2&rft.spage=24002&rft.pages=24002-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/132/24002&rft_dat=%3Cproquest_hal_p%3E3110114490%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110114490&rft_id=info:pmid/&rfr_iscdi=true |