Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning
Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four al...
Gespeichert in:
Veröffentlicht in: | Cement and concrete research 2022-01, Vol.151, p.106617, Article 106617 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106617 |
container_title | Cement and concrete research |
container_volume | 151 |
creator | Trincal, Vincent Benavent, Virginie Lahalle, Hugo Balsamo, Bastien Samson, Gabriel Patapy, Cédric Jainin, Yoann Cyr, Martin |
description | Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four alkali-activated binders compared with conventional binders: a metakaolin-based geopolymer, ground granulated blast-furnace slag (GGBS) activated by sodium silicate or by sodium carbonate, and a mixture of metakaolin-GGBS activated by sodium silicate. After a 28-day autogenous cure, mortar and paste samples were dried at temperatures ranging between 20 °C and 125 °C. Micro-structural damage was observed in metakaolin-based AAMs dried at temperatures above 40 °C, but occurred only between 40 and 60 °C for GGBS-based AAMs. SEM observations and MIP porosimetry coupled with mineralogical analyses, allowed AAMs drying mechanisms to be better understood, and recommendations to be made for the preconditioning of these materials. |
doi_str_mv | 10.1016/j.cemconres.2021.106617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03414263v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008884621002660</els_id><sourcerecordid>2616538251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-e5f9da72259d78abfcc7d6c98a572475669ec4593c4ed41eaac8bff81c3bcc5d3</originalsourceid><addsrcrecordid>eNqFkUFv3CAQhVHVSN0m-Q1F6qkHbw3YGB9XUdpUWqlS1Z4ROwwJWxu2wG6Vfx8sV7n2hHjzzRuGR8gH1m5Zy-Tn4xZwhhgS5i1vOauqlGx4QzZMDaIRY6fekk3btqpRqpPvyPucj_UquVAb8vfeOYRCo6M2PfvwSAvOJ0ymnBPSGGh5QnpKsUrFY144M_02k28MFH8xBS09-GAxZdrQHwhxnjFYU3wMmbqYaDbzaVo8ai1YvxTqmBty5cyU8fbfeU1-fbn_effQ7L9__Xa32zfQcVka7N1ozcB5P9pBmYMDGKyEUZl-4N3QSzkidP0ooEPbMTQG1ME5xUAcAHorrsmn1ffJTPqU_GzSs47G64fdXi9aKzpWR4kLq-zHla37_jljLvoYzynU52kumeyF4v1CDSsFKeac0L3aslYvieijfk1EL4noNZHauVs7sS588Zh0Bo8B0Pr6OUXb6P_r8QJSS5sr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616538251</pqid></control><display><type>article</type><title>Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Trincal, Vincent ; Benavent, Virginie ; Lahalle, Hugo ; Balsamo, Bastien ; Samson, Gabriel ; Patapy, Cédric ; Jainin, Yoann ; Cyr, Martin</creator><creatorcontrib>Trincal, Vincent ; Benavent, Virginie ; Lahalle, Hugo ; Balsamo, Bastien ; Samson, Gabriel ; Patapy, Cédric ; Jainin, Yoann ; Cyr, Martin</creatorcontrib><description>Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four alkali-activated binders compared with conventional binders: a metakaolin-based geopolymer, ground granulated blast-furnace slag (GGBS) activated by sodium silicate or by sodium carbonate, and a mixture of metakaolin-GGBS activated by sodium silicate. After a 28-day autogenous cure, mortar and paste samples were dried at temperatures ranging between 20 °C and 125 °C. Micro-structural damage was observed in metakaolin-based AAMs dried at temperatures above 40 °C, but occurred only between 40 and 60 °C for GGBS-based AAMs. SEM observations and MIP porosimetry coupled with mineralogical analyses, allowed AAMs drying mechanisms to be better understood, and recommendations to be made for the preconditioning of these materials.</description><identifier>ISSN: 0008-8846</identifier><identifier>EISSN: 1873-3948</identifier><identifier>DOI: 10.1016/j.cemconres.2021.106617</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Activated carbon ; Alkali-activated binder ; Blast furnace chemistry ; Blast furnace practice ; Civil Engineering ; Drying ; Drying conditions ; Engineering Sciences ; Geopolymer ; Geopolymers ; GGBS ; Granulation ; Metakaolin ; Mortars (material) ; Preconditioning ; Sodium carbonate ; Sodium silicates ; Structural damage</subject><ispartof>Cement and concrete research, 2022-01, Vol.151, p.106617, Article 106617</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2022</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-e5f9da72259d78abfcc7d6c98a572475669ec4593c4ed41eaac8bff81c3bcc5d3</citedby><cites>FETCH-LOGICAL-c426t-e5f9da72259d78abfcc7d6c98a572475669ec4593c4ed41eaac8bff81c3bcc5d3</cites><orcidid>0000-0003-3538-7893 ; 0000-0002-5012-9131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cemconres.2021.106617$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://insa-toulouse.hal.science/hal-03414263$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Trincal, Vincent</creatorcontrib><creatorcontrib>Benavent, Virginie</creatorcontrib><creatorcontrib>Lahalle, Hugo</creatorcontrib><creatorcontrib>Balsamo, Bastien</creatorcontrib><creatorcontrib>Samson, Gabriel</creatorcontrib><creatorcontrib>Patapy, Cédric</creatorcontrib><creatorcontrib>Jainin, Yoann</creatorcontrib><creatorcontrib>Cyr, Martin</creatorcontrib><title>Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning</title><title>Cement and concrete research</title><description>Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four alkali-activated binders compared with conventional binders: a metakaolin-based geopolymer, ground granulated blast-furnace slag (GGBS) activated by sodium silicate or by sodium carbonate, and a mixture of metakaolin-GGBS activated by sodium silicate. After a 28-day autogenous cure, mortar and paste samples were dried at temperatures ranging between 20 °C and 125 °C. Micro-structural damage was observed in metakaolin-based AAMs dried at temperatures above 40 °C, but occurred only between 40 and 60 °C for GGBS-based AAMs. SEM observations and MIP porosimetry coupled with mineralogical analyses, allowed AAMs drying mechanisms to be better understood, and recommendations to be made for the preconditioning of these materials.</description><subject>Activated carbon</subject><subject>Alkali-activated binder</subject><subject>Blast furnace chemistry</subject><subject>Blast furnace practice</subject><subject>Civil Engineering</subject><subject>Drying</subject><subject>Drying conditions</subject><subject>Engineering Sciences</subject><subject>Geopolymer</subject><subject>Geopolymers</subject><subject>GGBS</subject><subject>Granulation</subject><subject>Metakaolin</subject><subject>Mortars (material)</subject><subject>Preconditioning</subject><subject>Sodium carbonate</subject><subject>Sodium silicates</subject><subject>Structural damage</subject><issn>0008-8846</issn><issn>1873-3948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv3CAQhVHVSN0m-Q1F6qkHbw3YGB9XUdpUWqlS1Z4ROwwJWxu2wG6Vfx8sV7n2hHjzzRuGR8gH1m5Zy-Tn4xZwhhgS5i1vOauqlGx4QzZMDaIRY6fekk3btqpRqpPvyPucj_UquVAb8vfeOYRCo6M2PfvwSAvOJ0ymnBPSGGh5QnpKsUrFY144M_02k28MFH8xBS09-GAxZdrQHwhxnjFYU3wMmbqYaDbzaVo8ai1YvxTqmBty5cyU8fbfeU1-fbn_effQ7L9__Xa32zfQcVka7N1ozcB5P9pBmYMDGKyEUZl-4N3QSzkidP0ooEPbMTQG1ME5xUAcAHorrsmn1ffJTPqU_GzSs47G64fdXi9aKzpWR4kLq-zHla37_jljLvoYzynU52kumeyF4v1CDSsFKeac0L3aslYvieijfk1EL4noNZHauVs7sS588Zh0Bo8B0Pr6OUXb6P_r8QJSS5sr</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Trincal, Vincent</creator><creator>Benavent, Virginie</creator><creator>Lahalle, Hugo</creator><creator>Balsamo, Bastien</creator><creator>Samson, Gabriel</creator><creator>Patapy, Cédric</creator><creator>Jainin, Yoann</creator><creator>Cyr, Martin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3538-7893</orcidid><orcidid>https://orcid.org/0000-0002-5012-9131</orcidid></search><sort><creationdate>202201</creationdate><title>Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning</title><author>Trincal, Vincent ; Benavent, Virginie ; Lahalle, Hugo ; Balsamo, Bastien ; Samson, Gabriel ; Patapy, Cédric ; Jainin, Yoann ; Cyr, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-e5f9da72259d78abfcc7d6c98a572475669ec4593c4ed41eaac8bff81c3bcc5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated carbon</topic><topic>Alkali-activated binder</topic><topic>Blast furnace chemistry</topic><topic>Blast furnace practice</topic><topic>Civil Engineering</topic><topic>Drying</topic><topic>Drying conditions</topic><topic>Engineering Sciences</topic><topic>Geopolymer</topic><topic>Geopolymers</topic><topic>GGBS</topic><topic>Granulation</topic><topic>Metakaolin</topic><topic>Mortars (material)</topic><topic>Preconditioning</topic><topic>Sodium carbonate</topic><topic>Sodium silicates</topic><topic>Structural damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trincal, Vincent</creatorcontrib><creatorcontrib>Benavent, Virginie</creatorcontrib><creatorcontrib>Lahalle, Hugo</creatorcontrib><creatorcontrib>Balsamo, Bastien</creatorcontrib><creatorcontrib>Samson, Gabriel</creatorcontrib><creatorcontrib>Patapy, Cédric</creatorcontrib><creatorcontrib>Jainin, Yoann</creatorcontrib><creatorcontrib>Cyr, Martin</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Cement and concrete research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trincal, Vincent</au><au>Benavent, Virginie</au><au>Lahalle, Hugo</au><au>Balsamo, Bastien</au><au>Samson, Gabriel</au><au>Patapy, Cédric</au><au>Jainin, Yoann</au><au>Cyr, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning</atitle><jtitle>Cement and concrete research</jtitle><date>2022-01</date><risdate>2022</risdate><volume>151</volume><spage>106617</spage><pages>106617-</pages><artnum>106617</artnum><issn>0008-8846</issn><eissn>1873-3948</eissn><abstract>Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four alkali-activated binders compared with conventional binders: a metakaolin-based geopolymer, ground granulated blast-furnace slag (GGBS) activated by sodium silicate or by sodium carbonate, and a mixture of metakaolin-GGBS activated by sodium silicate. After a 28-day autogenous cure, mortar and paste samples were dried at temperatures ranging between 20 °C and 125 °C. Micro-structural damage was observed in metakaolin-based AAMs dried at temperatures above 40 °C, but occurred only between 40 and 60 °C for GGBS-based AAMs. SEM observations and MIP porosimetry coupled with mineralogical analyses, allowed AAMs drying mechanisms to be better understood, and recommendations to be made for the preconditioning of these materials.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cemconres.2021.106617</doi><orcidid>https://orcid.org/0000-0003-3538-7893</orcidid><orcidid>https://orcid.org/0000-0002-5012-9131</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-8846 |
ispartof | Cement and concrete research, 2022-01, Vol.151, p.106617, Article 106617 |
issn | 0008-8846 1873-3948 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03414263v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Activated carbon Alkali-activated binder Blast furnace chemistry Blast furnace practice Civil Engineering Drying Drying conditions Engineering Sciences Geopolymer Geopolymers GGBS Granulation Metakaolin Mortars (material) Preconditioning Sodium carbonate Sodium silicates Structural damage |
title | Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20drying%20temperature%20on%20the%20properties%20of%20alkali-activated%20binders%20-%20Recommendations%20for%20sample%20preconditioning&rft.jtitle=Cement%20and%20concrete%20research&rft.au=Trincal,%20Vincent&rft.date=2022-01&rft.volume=151&rft.spage=106617&rft.pages=106617-&rft.artnum=106617&rft.issn=0008-8846&rft.eissn=1873-3948&rft_id=info:doi/10.1016/j.cemconres.2021.106617&rft_dat=%3Cproquest_hal_p%3E2616538251%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616538251&rft_id=info:pmid/&rft_els_id=S0008884621002660&rfr_iscdi=true |