Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning

Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cement and concrete research 2022-01, Vol.151, p.106617, Article 106617
Hauptverfasser: Trincal, Vincent, Benavent, Virginie, Lahalle, Hugo, Balsamo, Bastien, Samson, Gabriel, Patapy, Cédric, Jainin, Yoann, Cyr, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106617
container_title Cement and concrete research
container_volume 151
creator Trincal, Vincent
Benavent, Virginie
Lahalle, Hugo
Balsamo, Bastien
Samson, Gabriel
Patapy, Cédric
Jainin, Yoann
Cyr, Martin
description Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four alkali-activated binders compared with conventional binders: a metakaolin-based geopolymer, ground granulated blast-furnace slag (GGBS) activated by sodium silicate or by sodium carbonate, and a mixture of metakaolin-GGBS activated by sodium silicate. After a 28-day autogenous cure, mortar and paste samples were dried at temperatures ranging between 20 °C and 125 °C. Micro-structural damage was observed in metakaolin-based AAMs dried at temperatures above 40 °C, but occurred only between 40 and 60 °C for GGBS-based AAMs. SEM observations and MIP porosimetry coupled with mineralogical analyses, allowed AAMs drying mechanisms to be better understood, and recommendations to be made for the preconditioning of these materials.
doi_str_mv 10.1016/j.cemconres.2021.106617
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03414263v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008884621002660</els_id><sourcerecordid>2616538251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-e5f9da72259d78abfcc7d6c98a572475669ec4593c4ed41eaac8bff81c3bcc5d3</originalsourceid><addsrcrecordid>eNqFkUFv3CAQhVHVSN0m-Q1F6qkHbw3YGB9XUdpUWqlS1Z4ROwwJWxu2wG6Vfx8sV7n2hHjzzRuGR8gH1m5Zy-Tn4xZwhhgS5i1vOauqlGx4QzZMDaIRY6fekk3btqpRqpPvyPucj_UquVAb8vfeOYRCo6M2PfvwSAvOJ0ymnBPSGGh5QnpKsUrFY144M_02k28MFH8xBS09-GAxZdrQHwhxnjFYU3wMmbqYaDbzaVo8ai1YvxTqmBty5cyU8fbfeU1-fbn_effQ7L9__Xa32zfQcVka7N1ozcB5P9pBmYMDGKyEUZl-4N3QSzkidP0ooEPbMTQG1ME5xUAcAHorrsmn1ffJTPqU_GzSs47G64fdXi9aKzpWR4kLq-zHla37_jljLvoYzynU52kumeyF4v1CDSsFKeac0L3aslYvieijfk1EL4noNZHauVs7sS588Zh0Bo8B0Pr6OUXb6P_r8QJSS5sr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616538251</pqid></control><display><type>article</type><title>Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Trincal, Vincent ; Benavent, Virginie ; Lahalle, Hugo ; Balsamo, Bastien ; Samson, Gabriel ; Patapy, Cédric ; Jainin, Yoann ; Cyr, Martin</creator><creatorcontrib>Trincal, Vincent ; Benavent, Virginie ; Lahalle, Hugo ; Balsamo, Bastien ; Samson, Gabriel ; Patapy, Cédric ; Jainin, Yoann ; Cyr, Martin</creatorcontrib><description>Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four alkali-activated binders compared with conventional binders: a metakaolin-based geopolymer, ground granulated blast-furnace slag (GGBS) activated by sodium silicate or by sodium carbonate, and a mixture of metakaolin-GGBS activated by sodium silicate. After a 28-day autogenous cure, mortar and paste samples were dried at temperatures ranging between 20 °C and 125 °C. Micro-structural damage was observed in metakaolin-based AAMs dried at temperatures above 40 °C, but occurred only between 40 and 60 °C for GGBS-based AAMs. SEM observations and MIP porosimetry coupled with mineralogical analyses, allowed AAMs drying mechanisms to be better understood, and recommendations to be made for the preconditioning of these materials.</description><identifier>ISSN: 0008-8846</identifier><identifier>EISSN: 1873-3948</identifier><identifier>DOI: 10.1016/j.cemconres.2021.106617</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Activated carbon ; Alkali-activated binder ; Blast furnace chemistry ; Blast furnace practice ; Civil Engineering ; Drying ; Drying conditions ; Engineering Sciences ; Geopolymer ; Geopolymers ; GGBS ; Granulation ; Metakaolin ; Mortars (material) ; Preconditioning ; Sodium carbonate ; Sodium silicates ; Structural damage</subject><ispartof>Cement and concrete research, 2022-01, Vol.151, p.106617, Article 106617</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2022</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-e5f9da72259d78abfcc7d6c98a572475669ec4593c4ed41eaac8bff81c3bcc5d3</citedby><cites>FETCH-LOGICAL-c426t-e5f9da72259d78abfcc7d6c98a572475669ec4593c4ed41eaac8bff81c3bcc5d3</cites><orcidid>0000-0003-3538-7893 ; 0000-0002-5012-9131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cemconres.2021.106617$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://insa-toulouse.hal.science/hal-03414263$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Trincal, Vincent</creatorcontrib><creatorcontrib>Benavent, Virginie</creatorcontrib><creatorcontrib>Lahalle, Hugo</creatorcontrib><creatorcontrib>Balsamo, Bastien</creatorcontrib><creatorcontrib>Samson, Gabriel</creatorcontrib><creatorcontrib>Patapy, Cédric</creatorcontrib><creatorcontrib>Jainin, Yoann</creatorcontrib><creatorcontrib>Cyr, Martin</creatorcontrib><title>Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning</title><title>Cement and concrete research</title><description>Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four alkali-activated binders compared with conventional binders: a metakaolin-based geopolymer, ground granulated blast-furnace slag (GGBS) activated by sodium silicate or by sodium carbonate, and a mixture of metakaolin-GGBS activated by sodium silicate. After a 28-day autogenous cure, mortar and paste samples were dried at temperatures ranging between 20 °C and 125 °C. Micro-structural damage was observed in metakaolin-based AAMs dried at temperatures above 40 °C, but occurred only between 40 and 60 °C for GGBS-based AAMs. SEM observations and MIP porosimetry coupled with mineralogical analyses, allowed AAMs drying mechanisms to be better understood, and recommendations to be made for the preconditioning of these materials.</description><subject>Activated carbon</subject><subject>Alkali-activated binder</subject><subject>Blast furnace chemistry</subject><subject>Blast furnace practice</subject><subject>Civil Engineering</subject><subject>Drying</subject><subject>Drying conditions</subject><subject>Engineering Sciences</subject><subject>Geopolymer</subject><subject>Geopolymers</subject><subject>GGBS</subject><subject>Granulation</subject><subject>Metakaolin</subject><subject>Mortars (material)</subject><subject>Preconditioning</subject><subject>Sodium carbonate</subject><subject>Sodium silicates</subject><subject>Structural damage</subject><issn>0008-8846</issn><issn>1873-3948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv3CAQhVHVSN0m-Q1F6qkHbw3YGB9XUdpUWqlS1Z4ROwwJWxu2wG6Vfx8sV7n2hHjzzRuGR8gH1m5Zy-Tn4xZwhhgS5i1vOauqlGx4QzZMDaIRY6fekk3btqpRqpPvyPucj_UquVAb8vfeOYRCo6M2PfvwSAvOJ0ymnBPSGGh5QnpKsUrFY144M_02k28MFH8xBS09-GAxZdrQHwhxnjFYU3wMmbqYaDbzaVo8ai1YvxTqmBty5cyU8fbfeU1-fbn_effQ7L9__Xa32zfQcVka7N1ozcB5P9pBmYMDGKyEUZl-4N3QSzkidP0ooEPbMTQG1ME5xUAcAHorrsmn1ffJTPqU_GzSs47G64fdXi9aKzpWR4kLq-zHla37_jljLvoYzynU52kumeyF4v1CDSsFKeac0L3aslYvieijfk1EL4noNZHauVs7sS588Zh0Bo8B0Pr6OUXb6P_r8QJSS5sr</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Trincal, Vincent</creator><creator>Benavent, Virginie</creator><creator>Lahalle, Hugo</creator><creator>Balsamo, Bastien</creator><creator>Samson, Gabriel</creator><creator>Patapy, Cédric</creator><creator>Jainin, Yoann</creator><creator>Cyr, Martin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3538-7893</orcidid><orcidid>https://orcid.org/0000-0002-5012-9131</orcidid></search><sort><creationdate>202201</creationdate><title>Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning</title><author>Trincal, Vincent ; Benavent, Virginie ; Lahalle, Hugo ; Balsamo, Bastien ; Samson, Gabriel ; Patapy, Cédric ; Jainin, Yoann ; Cyr, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-e5f9da72259d78abfcc7d6c98a572475669ec4593c4ed41eaac8bff81c3bcc5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated carbon</topic><topic>Alkali-activated binder</topic><topic>Blast furnace chemistry</topic><topic>Blast furnace practice</topic><topic>Civil Engineering</topic><topic>Drying</topic><topic>Drying conditions</topic><topic>Engineering Sciences</topic><topic>Geopolymer</topic><topic>Geopolymers</topic><topic>GGBS</topic><topic>Granulation</topic><topic>Metakaolin</topic><topic>Mortars (material)</topic><topic>Preconditioning</topic><topic>Sodium carbonate</topic><topic>Sodium silicates</topic><topic>Structural damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trincal, Vincent</creatorcontrib><creatorcontrib>Benavent, Virginie</creatorcontrib><creatorcontrib>Lahalle, Hugo</creatorcontrib><creatorcontrib>Balsamo, Bastien</creatorcontrib><creatorcontrib>Samson, Gabriel</creatorcontrib><creatorcontrib>Patapy, Cédric</creatorcontrib><creatorcontrib>Jainin, Yoann</creatorcontrib><creatorcontrib>Cyr, Martin</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Cement and concrete research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trincal, Vincent</au><au>Benavent, Virginie</au><au>Lahalle, Hugo</au><au>Balsamo, Bastien</au><au>Samson, Gabriel</au><au>Patapy, Cédric</au><au>Jainin, Yoann</au><au>Cyr, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning</atitle><jtitle>Cement and concrete research</jtitle><date>2022-01</date><risdate>2022</risdate><volume>151</volume><spage>106617</spage><pages>106617-</pages><artnum>106617</artnum><issn>0008-8846</issn><eissn>1873-3948</eissn><abstract>Various durability tests require a drying step to remove free water without altering the chemistry or microstructure of the materials. However, little is known about the effects of drying on alkali-activated materials (AAMs). This study focusses on the drying stage to assess the behaviour of four alkali-activated binders compared with conventional binders: a metakaolin-based geopolymer, ground granulated blast-furnace slag (GGBS) activated by sodium silicate or by sodium carbonate, and a mixture of metakaolin-GGBS activated by sodium silicate. After a 28-day autogenous cure, mortar and paste samples were dried at temperatures ranging between 20 °C and 125 °C. Micro-structural damage was observed in metakaolin-based AAMs dried at temperatures above 40 °C, but occurred only between 40 and 60 °C for GGBS-based AAMs. SEM observations and MIP porosimetry coupled with mineralogical analyses, allowed AAMs drying mechanisms to be better understood, and recommendations to be made for the preconditioning of these materials.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cemconres.2021.106617</doi><orcidid>https://orcid.org/0000-0003-3538-7893</orcidid><orcidid>https://orcid.org/0000-0002-5012-9131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-8846
ispartof Cement and concrete research, 2022-01, Vol.151, p.106617, Article 106617
issn 0008-8846
1873-3948
language eng
recordid cdi_hal_primary_oai_HAL_hal_03414263v1
source ScienceDirect Journals (5 years ago - present)
subjects Activated carbon
Alkali-activated binder
Blast furnace chemistry
Blast furnace practice
Civil Engineering
Drying
Drying conditions
Engineering Sciences
Geopolymer
Geopolymers
GGBS
Granulation
Metakaolin
Mortars (material)
Preconditioning
Sodium carbonate
Sodium silicates
Structural damage
title Effect of drying temperature on the properties of alkali-activated binders - Recommendations for sample preconditioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20drying%20temperature%20on%20the%20properties%20of%20alkali-activated%20binders%20-%20Recommendations%20for%20sample%20preconditioning&rft.jtitle=Cement%20and%20concrete%20research&rft.au=Trincal,%20Vincent&rft.date=2022-01&rft.volume=151&rft.spage=106617&rft.pages=106617-&rft.artnum=106617&rft.issn=0008-8846&rft.eissn=1873-3948&rft_id=info:doi/10.1016/j.cemconres.2021.106617&rft_dat=%3Cproquest_hal_p%3E2616538251%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616538251&rft_id=info:pmid/&rft_els_id=S0008884621002660&rfr_iscdi=true