Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity
Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of c...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2020-11, Vol.20 (23), p.4391-4403 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4403 |
---|---|
container_issue | 23 |
container_start_page | 4391 |
container_title | Lab on a chip |
container_volume | 20 |
creator | Hourlier-Fargette, Aurélie Schon, Stéphanie Xue, Yeguang Avila, Raudel Li, Weihua Gao, Yiwei Liu, Claire Kim, Sung Bong Raj, Milan S Fields, Kelsey B Parsons, Blake V Lee, KunHyuck Lee, Jong Yoon Chung, Ha Uk Lee, Stephen P Johnson, Michael Bandodkar, Amay J Gutruf, Philipp Model, Jeffrey B Aranyosi, Alexander J Choi, Jungil Ray, Tyler R Ghaffari, Roozbeh Huang, Yonggang Rogers, John A |
description | Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance. |
doi_str_mv | 10.1039/d0lc00705f |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03414102v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464313529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-91df56be990ce5176f521c7d64ba72198bca51073506b0f22ef5aa554131291a3</originalsourceid><addsrcrecordid>eNpd0ctu1DAUBuAIgegFNjwAssSmoAZ8TeJlNbS00kgsgHXkOMfUxbEHH6fVPEdfmLTTzoKVLevTr3P8V9U7Rj8zKvSXkQZLaUuVe1EdMtmKmrJOv9zfdXtQHSHeUMqUbLrX1YEQtNOdaA-r-x9_fKx9LJCdsTASTK6QyducXJj96C3BLRaYkNz5ck2mNM7BZGLiSDLMaIYABALYklP0FolLmfhI0JeZWLMx1hd_CwQhoo-_SXIE78AUEhLiKcmmwGOWTXGc7UJ92b6pXjkTEN4-ncfVr4vzn6vLev3929XqbF1byXmpNRudagbQmlpQrG2c4sy2YyMH03Kmu8EaxWgrFG0G6jgHp4xRSjLBuGZGHFcfd7nXJvSb7CeTt30yvr88W_cPb1RIJhnlt2yxJzu7yenvDFj6yaOFEEyENGPPpRJNJ7lqFvrhP3qT5hyXTRbVSMGE4npRn3Zq-WnEDG4_AaP9Q639V7pePdZ6seD3T5HzMMG4p889in9XOp4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464313529</pqid></control><display><type>article</type><title>Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hourlier-Fargette, Aurélie ; Schon, Stéphanie ; Xue, Yeguang ; Avila, Raudel ; Li, Weihua ; Gao, Yiwei ; Liu, Claire ; Kim, Sung Bong ; Raj, Milan S ; Fields, Kelsey B ; Parsons, Blake V ; Lee, KunHyuck ; Lee, Jong Yoon ; Chung, Ha Uk ; Lee, Stephen P ; Johnson, Michael ; Bandodkar, Amay J ; Gutruf, Philipp ; Model, Jeffrey B ; Aranyosi, Alexander J ; Choi, Jungil ; Ray, Tyler R ; Ghaffari, Roozbeh ; Huang, Yonggang ; Rogers, John A</creator><creatorcontrib>Hourlier-Fargette, Aurélie ; Schon, Stéphanie ; Xue, Yeguang ; Avila, Raudel ; Li, Weihua ; Gao, Yiwei ; Liu, Claire ; Kim, Sung Bong ; Raj, Milan S ; Fields, Kelsey B ; Parsons, Blake V ; Lee, KunHyuck ; Lee, Jong Yoon ; Chung, Ha Uk ; Lee, Stephen P ; Johnson, Michael ; Bandodkar, Amay J ; Gutruf, Philipp ; Model, Jeffrey B ; Aranyosi, Alexander J ; Choi, Jungil ; Ray, Tyler R ; Ghaffari, Roozbeh ; Huang, Yonggang ; Rogers, John A</creatorcontrib><description>Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d0lc00705f</identifier><identifier>PMID: 33089837</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bioengineering ; Biomarkers ; Biosensing Techniques ; Bluetooth ; Collection ; Conductivity ; Configurations ; Corrosion potential ; Electrodes ; Electronics ; Finite element method ; Human performance ; Humans ; Inspection ; Lab-On-A-Chip Devices ; Life Sciences ; Microfluidics ; Modular systems ; Physical exercise ; Physics ; Skin ; Sweat</subject><ispartof>Lab on a chip, 2020-11, Vol.20 (23), p.4391-4403</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-91df56be990ce5176f521c7d64ba72198bca51073506b0f22ef5aa554131291a3</citedby><cites>FETCH-LOGICAL-c422t-91df56be990ce5176f521c7d64ba72198bca51073506b0f22ef5aa554131291a3</cites><orcidid>0000-0002-1968-5092 ; 0000-0003-4308-389X ; 0000-0002-1792-1506 ; 0000-0002-0148-4145 ; 0000-0003-3082-349X ; 0000-0002-8133-5026 ; 0000-0002-0483-8359 ; 0000-0003-1626-7669 ; 0000-0001-7047-9676 ; 0000-0003-3592-8944 ; 0000-0001-5380-2363 ; 0000-0003-3052-7076 ; 0000-0002-8521-8652 ; 0000-0002-3659-8978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33089837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03414102$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hourlier-Fargette, Aurélie</creatorcontrib><creatorcontrib>Schon, Stéphanie</creatorcontrib><creatorcontrib>Xue, Yeguang</creatorcontrib><creatorcontrib>Avila, Raudel</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Gao, Yiwei</creatorcontrib><creatorcontrib>Liu, Claire</creatorcontrib><creatorcontrib>Kim, Sung Bong</creatorcontrib><creatorcontrib>Raj, Milan S</creatorcontrib><creatorcontrib>Fields, Kelsey B</creatorcontrib><creatorcontrib>Parsons, Blake V</creatorcontrib><creatorcontrib>Lee, KunHyuck</creatorcontrib><creatorcontrib>Lee, Jong Yoon</creatorcontrib><creatorcontrib>Chung, Ha Uk</creatorcontrib><creatorcontrib>Lee, Stephen P</creatorcontrib><creatorcontrib>Johnson, Michael</creatorcontrib><creatorcontrib>Bandodkar, Amay J</creatorcontrib><creatorcontrib>Gutruf, Philipp</creatorcontrib><creatorcontrib>Model, Jeffrey B</creatorcontrib><creatorcontrib>Aranyosi, Alexander J</creatorcontrib><creatorcontrib>Choi, Jungil</creatorcontrib><creatorcontrib>Ray, Tyler R</creatorcontrib><creatorcontrib>Ghaffari, Roozbeh</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><title>Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.</description><subject>Bioengineering</subject><subject>Biomarkers</subject><subject>Biosensing Techniques</subject><subject>Bluetooth</subject><subject>Collection</subject><subject>Conductivity</subject><subject>Configurations</subject><subject>Corrosion potential</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Finite element method</subject><subject>Human performance</subject><subject>Humans</subject><subject>Inspection</subject><subject>Lab-On-A-Chip Devices</subject><subject>Life Sciences</subject><subject>Microfluidics</subject><subject>Modular systems</subject><subject>Physical exercise</subject><subject>Physics</subject><subject>Skin</subject><subject>Sweat</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctu1DAUBuAIgegFNjwAssSmoAZ8TeJlNbS00kgsgHXkOMfUxbEHH6fVPEdfmLTTzoKVLevTr3P8V9U7Rj8zKvSXkQZLaUuVe1EdMtmKmrJOv9zfdXtQHSHeUMqUbLrX1YEQtNOdaA-r-x9_fKx9LJCdsTASTK6QyducXJj96C3BLRaYkNz5ck2mNM7BZGLiSDLMaIYABALYklP0FolLmfhI0JeZWLMx1hd_CwQhoo-_SXIE78AUEhLiKcmmwGOWTXGc7UJ92b6pXjkTEN4-ncfVr4vzn6vLev3929XqbF1byXmpNRudagbQmlpQrG2c4sy2YyMH03Kmu8EaxWgrFG0G6jgHp4xRSjLBuGZGHFcfd7nXJvSb7CeTt30yvr88W_cPb1RIJhnlt2yxJzu7yenvDFj6yaOFEEyENGPPpRJNJ7lqFvrhP3qT5hyXTRbVSMGE4npRn3Zq-WnEDG4_AaP9Q639V7pePdZ6seD3T5HzMMG4p889in9XOp4g</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Hourlier-Fargette, Aurélie</creator><creator>Schon, Stéphanie</creator><creator>Xue, Yeguang</creator><creator>Avila, Raudel</creator><creator>Li, Weihua</creator><creator>Gao, Yiwei</creator><creator>Liu, Claire</creator><creator>Kim, Sung Bong</creator><creator>Raj, Milan S</creator><creator>Fields, Kelsey B</creator><creator>Parsons, Blake V</creator><creator>Lee, KunHyuck</creator><creator>Lee, Jong Yoon</creator><creator>Chung, Ha Uk</creator><creator>Lee, Stephen P</creator><creator>Johnson, Michael</creator><creator>Bandodkar, Amay J</creator><creator>Gutruf, Philipp</creator><creator>Model, Jeffrey B</creator><creator>Aranyosi, Alexander J</creator><creator>Choi, Jungil</creator><creator>Ray, Tyler R</creator><creator>Ghaffari, Roozbeh</creator><creator>Huang, Yonggang</creator><creator>Rogers, John A</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1968-5092</orcidid><orcidid>https://orcid.org/0000-0003-4308-389X</orcidid><orcidid>https://orcid.org/0000-0002-1792-1506</orcidid><orcidid>https://orcid.org/0000-0002-0148-4145</orcidid><orcidid>https://orcid.org/0000-0003-3082-349X</orcidid><orcidid>https://orcid.org/0000-0002-8133-5026</orcidid><orcidid>https://orcid.org/0000-0002-0483-8359</orcidid><orcidid>https://orcid.org/0000-0003-1626-7669</orcidid><orcidid>https://orcid.org/0000-0001-7047-9676</orcidid><orcidid>https://orcid.org/0000-0003-3592-8944</orcidid><orcidid>https://orcid.org/0000-0001-5380-2363</orcidid><orcidid>https://orcid.org/0000-0003-3052-7076</orcidid><orcidid>https://orcid.org/0000-0002-8521-8652</orcidid><orcidid>https://orcid.org/0000-0002-3659-8978</orcidid></search><sort><creationdate>20201124</creationdate><title>Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity</title><author>Hourlier-Fargette, Aurélie ; Schon, Stéphanie ; Xue, Yeguang ; Avila, Raudel ; Li, Weihua ; Gao, Yiwei ; Liu, Claire ; Kim, Sung Bong ; Raj, Milan S ; Fields, Kelsey B ; Parsons, Blake V ; Lee, KunHyuck ; Lee, Jong Yoon ; Chung, Ha Uk ; Lee, Stephen P ; Johnson, Michael ; Bandodkar, Amay J ; Gutruf, Philipp ; Model, Jeffrey B ; Aranyosi, Alexander J ; Choi, Jungil ; Ray, Tyler R ; Ghaffari, Roozbeh ; Huang, Yonggang ; Rogers, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-91df56be990ce5176f521c7d64ba72198bca51073506b0f22ef5aa554131291a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioengineering</topic><topic>Biomarkers</topic><topic>Biosensing Techniques</topic><topic>Bluetooth</topic><topic>Collection</topic><topic>Conductivity</topic><topic>Configurations</topic><topic>Corrosion potential</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Finite element method</topic><topic>Human performance</topic><topic>Humans</topic><topic>Inspection</topic><topic>Lab-On-A-Chip Devices</topic><topic>Life Sciences</topic><topic>Microfluidics</topic><topic>Modular systems</topic><topic>Physical exercise</topic><topic>Physics</topic><topic>Skin</topic><topic>Sweat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hourlier-Fargette, Aurélie</creatorcontrib><creatorcontrib>Schon, Stéphanie</creatorcontrib><creatorcontrib>Xue, Yeguang</creatorcontrib><creatorcontrib>Avila, Raudel</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Gao, Yiwei</creatorcontrib><creatorcontrib>Liu, Claire</creatorcontrib><creatorcontrib>Kim, Sung Bong</creatorcontrib><creatorcontrib>Raj, Milan S</creatorcontrib><creatorcontrib>Fields, Kelsey B</creatorcontrib><creatorcontrib>Parsons, Blake V</creatorcontrib><creatorcontrib>Lee, KunHyuck</creatorcontrib><creatorcontrib>Lee, Jong Yoon</creatorcontrib><creatorcontrib>Chung, Ha Uk</creatorcontrib><creatorcontrib>Lee, Stephen P</creatorcontrib><creatorcontrib>Johnson, Michael</creatorcontrib><creatorcontrib>Bandodkar, Amay J</creatorcontrib><creatorcontrib>Gutruf, Philipp</creatorcontrib><creatorcontrib>Model, Jeffrey B</creatorcontrib><creatorcontrib>Aranyosi, Alexander J</creatorcontrib><creatorcontrib>Choi, Jungil</creatorcontrib><creatorcontrib>Ray, Tyler R</creatorcontrib><creatorcontrib>Ghaffari, Roozbeh</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hourlier-Fargette, Aurélie</au><au>Schon, Stéphanie</au><au>Xue, Yeguang</au><au>Avila, Raudel</au><au>Li, Weihua</au><au>Gao, Yiwei</au><au>Liu, Claire</au><au>Kim, Sung Bong</au><au>Raj, Milan S</au><au>Fields, Kelsey B</au><au>Parsons, Blake V</au><au>Lee, KunHyuck</au><au>Lee, Jong Yoon</au><au>Chung, Ha Uk</au><au>Lee, Stephen P</au><au>Johnson, Michael</au><au>Bandodkar, Amay J</au><au>Gutruf, Philipp</au><au>Model, Jeffrey B</au><au>Aranyosi, Alexander J</au><au>Choi, Jungil</au><au>Ray, Tyler R</au><au>Ghaffari, Roozbeh</au><au>Huang, Yonggang</au><au>Rogers, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2020-11-24</date><risdate>2020</risdate><volume>20</volume><issue>23</issue><spage>4391</spage><epage>4403</epage><pages>4391-4403</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33089837</pmid><doi>10.1039/d0lc00705f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1968-5092</orcidid><orcidid>https://orcid.org/0000-0003-4308-389X</orcidid><orcidid>https://orcid.org/0000-0002-1792-1506</orcidid><orcidid>https://orcid.org/0000-0002-0148-4145</orcidid><orcidid>https://orcid.org/0000-0003-3082-349X</orcidid><orcidid>https://orcid.org/0000-0002-8133-5026</orcidid><orcidid>https://orcid.org/0000-0002-0483-8359</orcidid><orcidid>https://orcid.org/0000-0003-1626-7669</orcidid><orcidid>https://orcid.org/0000-0001-7047-9676</orcidid><orcidid>https://orcid.org/0000-0003-3592-8944</orcidid><orcidid>https://orcid.org/0000-0001-5380-2363</orcidid><orcidid>https://orcid.org/0000-0003-3052-7076</orcidid><orcidid>https://orcid.org/0000-0002-8521-8652</orcidid><orcidid>https://orcid.org/0000-0002-3659-8978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2020-11, Vol.20 (23), p.4391-4403 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03414102v1 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Bioengineering Biomarkers Biosensing Techniques Bluetooth Collection Conductivity Configurations Corrosion potential Electrodes Electronics Finite element method Human performance Humans Inspection Lab-On-A-Chip Devices Life Sciences Microfluidics Modular systems Physical exercise Physics Skin Sweat |
title | Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin-interfaced%20soft%20microfluidic%20systems%20with%20modular%20and%20reusable%20electronics%20for%20in%20situ%20capacitive%20sensing%20of%20sweat%20loss,%20rate%20and%20conductivity&rft.jtitle=Lab%20on%20a%20chip&rft.au=Hourlier-Fargette,%20Aur%C3%A9lie&rft.date=2020-11-24&rft.volume=20&rft.issue=23&rft.spage=4391&rft.epage=4403&rft.pages=4391-4403&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d0lc00705f&rft_dat=%3Cproquest_hal_p%3E2464313529%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464313529&rft_id=info:pmid/33089837&rfr_iscdi=true |