Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity

Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2020-11, Vol.20 (23), p.4391-4403
Hauptverfasser: Hourlier-Fargette, Aurélie, Schon, Stéphanie, Xue, Yeguang, Avila, Raudel, Li, Weihua, Gao, Yiwei, Liu, Claire, Kim, Sung Bong, Raj, Milan S, Fields, Kelsey B, Parsons, Blake V, Lee, KunHyuck, Lee, Jong Yoon, Chung, Ha Uk, Lee, Stephen P, Johnson, Michael, Bandodkar, Amay J, Gutruf, Philipp, Model, Jeffrey B, Aranyosi, Alexander J, Choi, Jungil, Ray, Tyler R, Ghaffari, Roozbeh, Huang, Yonggang, Rogers, John A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4403
container_issue 23
container_start_page 4391
container_title Lab on a chip
container_volume 20
creator Hourlier-Fargette, Aurélie
Schon, Stéphanie
Xue, Yeguang
Avila, Raudel
Li, Weihua
Gao, Yiwei
Liu, Claire
Kim, Sung Bong
Raj, Milan S
Fields, Kelsey B
Parsons, Blake V
Lee, KunHyuck
Lee, Jong Yoon
Chung, Ha Uk
Lee, Stephen P
Johnson, Michael
Bandodkar, Amay J
Gutruf, Philipp
Model, Jeffrey B
Aranyosi, Alexander J
Choi, Jungil
Ray, Tyler R
Ghaffari, Roozbeh
Huang, Yonggang
Rogers, John A
description Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.
doi_str_mv 10.1039/d0lc00705f
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03414102v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464313529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-91df56be990ce5176f521c7d64ba72198bca51073506b0f22ef5aa554131291a3</originalsourceid><addsrcrecordid>eNpd0ctu1DAUBuAIgegFNjwAssSmoAZ8TeJlNbS00kgsgHXkOMfUxbEHH6fVPEdfmLTTzoKVLevTr3P8V9U7Rj8zKvSXkQZLaUuVe1EdMtmKmrJOv9zfdXtQHSHeUMqUbLrX1YEQtNOdaA-r-x9_fKx9LJCdsTASTK6QyducXJj96C3BLRaYkNz5ck2mNM7BZGLiSDLMaIYABALYklP0FolLmfhI0JeZWLMx1hd_CwQhoo-_SXIE78AUEhLiKcmmwGOWTXGc7UJ92b6pXjkTEN4-ncfVr4vzn6vLev3929XqbF1byXmpNRudagbQmlpQrG2c4sy2YyMH03Kmu8EaxWgrFG0G6jgHp4xRSjLBuGZGHFcfd7nXJvSb7CeTt30yvr88W_cPb1RIJhnlt2yxJzu7yenvDFj6yaOFEEyENGPPpRJNJ7lqFvrhP3qT5hyXTRbVSMGE4npRn3Zq-WnEDG4_AaP9Q639V7pePdZ6seD3T5HzMMG4p889in9XOp4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464313529</pqid></control><display><type>article</type><title>Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hourlier-Fargette, Aurélie ; Schon, Stéphanie ; Xue, Yeguang ; Avila, Raudel ; Li, Weihua ; Gao, Yiwei ; Liu, Claire ; Kim, Sung Bong ; Raj, Milan S ; Fields, Kelsey B ; Parsons, Blake V ; Lee, KunHyuck ; Lee, Jong Yoon ; Chung, Ha Uk ; Lee, Stephen P ; Johnson, Michael ; Bandodkar, Amay J ; Gutruf, Philipp ; Model, Jeffrey B ; Aranyosi, Alexander J ; Choi, Jungil ; Ray, Tyler R ; Ghaffari, Roozbeh ; Huang, Yonggang ; Rogers, John A</creator><creatorcontrib>Hourlier-Fargette, Aurélie ; Schon, Stéphanie ; Xue, Yeguang ; Avila, Raudel ; Li, Weihua ; Gao, Yiwei ; Liu, Claire ; Kim, Sung Bong ; Raj, Milan S ; Fields, Kelsey B ; Parsons, Blake V ; Lee, KunHyuck ; Lee, Jong Yoon ; Chung, Ha Uk ; Lee, Stephen P ; Johnson, Michael ; Bandodkar, Amay J ; Gutruf, Philipp ; Model, Jeffrey B ; Aranyosi, Alexander J ; Choi, Jungil ; Ray, Tyler R ; Ghaffari, Roozbeh ; Huang, Yonggang ; Rogers, John A</creatorcontrib><description>Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d0lc00705f</identifier><identifier>PMID: 33089837</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bioengineering ; Biomarkers ; Biosensing Techniques ; Bluetooth ; Collection ; Conductivity ; Configurations ; Corrosion potential ; Electrodes ; Electronics ; Finite element method ; Human performance ; Humans ; Inspection ; Lab-On-A-Chip Devices ; Life Sciences ; Microfluidics ; Modular systems ; Physical exercise ; Physics ; Skin ; Sweat</subject><ispartof>Lab on a chip, 2020-11, Vol.20 (23), p.4391-4403</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-91df56be990ce5176f521c7d64ba72198bca51073506b0f22ef5aa554131291a3</citedby><cites>FETCH-LOGICAL-c422t-91df56be990ce5176f521c7d64ba72198bca51073506b0f22ef5aa554131291a3</cites><orcidid>0000-0002-1968-5092 ; 0000-0003-4308-389X ; 0000-0002-1792-1506 ; 0000-0002-0148-4145 ; 0000-0003-3082-349X ; 0000-0002-8133-5026 ; 0000-0002-0483-8359 ; 0000-0003-1626-7669 ; 0000-0001-7047-9676 ; 0000-0003-3592-8944 ; 0000-0001-5380-2363 ; 0000-0003-3052-7076 ; 0000-0002-8521-8652 ; 0000-0002-3659-8978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33089837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03414102$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hourlier-Fargette, Aurélie</creatorcontrib><creatorcontrib>Schon, Stéphanie</creatorcontrib><creatorcontrib>Xue, Yeguang</creatorcontrib><creatorcontrib>Avila, Raudel</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Gao, Yiwei</creatorcontrib><creatorcontrib>Liu, Claire</creatorcontrib><creatorcontrib>Kim, Sung Bong</creatorcontrib><creatorcontrib>Raj, Milan S</creatorcontrib><creatorcontrib>Fields, Kelsey B</creatorcontrib><creatorcontrib>Parsons, Blake V</creatorcontrib><creatorcontrib>Lee, KunHyuck</creatorcontrib><creatorcontrib>Lee, Jong Yoon</creatorcontrib><creatorcontrib>Chung, Ha Uk</creatorcontrib><creatorcontrib>Lee, Stephen P</creatorcontrib><creatorcontrib>Johnson, Michael</creatorcontrib><creatorcontrib>Bandodkar, Amay J</creatorcontrib><creatorcontrib>Gutruf, Philipp</creatorcontrib><creatorcontrib>Model, Jeffrey B</creatorcontrib><creatorcontrib>Aranyosi, Alexander J</creatorcontrib><creatorcontrib>Choi, Jungil</creatorcontrib><creatorcontrib>Ray, Tyler R</creatorcontrib><creatorcontrib>Ghaffari, Roozbeh</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><title>Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.</description><subject>Bioengineering</subject><subject>Biomarkers</subject><subject>Biosensing Techniques</subject><subject>Bluetooth</subject><subject>Collection</subject><subject>Conductivity</subject><subject>Configurations</subject><subject>Corrosion potential</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Finite element method</subject><subject>Human performance</subject><subject>Humans</subject><subject>Inspection</subject><subject>Lab-On-A-Chip Devices</subject><subject>Life Sciences</subject><subject>Microfluidics</subject><subject>Modular systems</subject><subject>Physical exercise</subject><subject>Physics</subject><subject>Skin</subject><subject>Sweat</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctu1DAUBuAIgegFNjwAssSmoAZ8TeJlNbS00kgsgHXkOMfUxbEHH6fVPEdfmLTTzoKVLevTr3P8V9U7Rj8zKvSXkQZLaUuVe1EdMtmKmrJOv9zfdXtQHSHeUMqUbLrX1YEQtNOdaA-r-x9_fKx9LJCdsTASTK6QyducXJj96C3BLRaYkNz5ck2mNM7BZGLiSDLMaIYABALYklP0FolLmfhI0JeZWLMx1hd_CwQhoo-_SXIE78AUEhLiKcmmwGOWTXGc7UJ92b6pXjkTEN4-ncfVr4vzn6vLev3929XqbF1byXmpNRudagbQmlpQrG2c4sy2YyMH03Kmu8EaxWgrFG0G6jgHp4xRSjLBuGZGHFcfd7nXJvSb7CeTt30yvr88W_cPb1RIJhnlt2yxJzu7yenvDFj6yaOFEEyENGPPpRJNJ7lqFvrhP3qT5hyXTRbVSMGE4npRn3Zq-WnEDG4_AaP9Q639V7pePdZ6seD3T5HzMMG4p889in9XOp4g</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Hourlier-Fargette, Aurélie</creator><creator>Schon, Stéphanie</creator><creator>Xue, Yeguang</creator><creator>Avila, Raudel</creator><creator>Li, Weihua</creator><creator>Gao, Yiwei</creator><creator>Liu, Claire</creator><creator>Kim, Sung Bong</creator><creator>Raj, Milan S</creator><creator>Fields, Kelsey B</creator><creator>Parsons, Blake V</creator><creator>Lee, KunHyuck</creator><creator>Lee, Jong Yoon</creator><creator>Chung, Ha Uk</creator><creator>Lee, Stephen P</creator><creator>Johnson, Michael</creator><creator>Bandodkar, Amay J</creator><creator>Gutruf, Philipp</creator><creator>Model, Jeffrey B</creator><creator>Aranyosi, Alexander J</creator><creator>Choi, Jungil</creator><creator>Ray, Tyler R</creator><creator>Ghaffari, Roozbeh</creator><creator>Huang, Yonggang</creator><creator>Rogers, John A</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1968-5092</orcidid><orcidid>https://orcid.org/0000-0003-4308-389X</orcidid><orcidid>https://orcid.org/0000-0002-1792-1506</orcidid><orcidid>https://orcid.org/0000-0002-0148-4145</orcidid><orcidid>https://orcid.org/0000-0003-3082-349X</orcidid><orcidid>https://orcid.org/0000-0002-8133-5026</orcidid><orcidid>https://orcid.org/0000-0002-0483-8359</orcidid><orcidid>https://orcid.org/0000-0003-1626-7669</orcidid><orcidid>https://orcid.org/0000-0001-7047-9676</orcidid><orcidid>https://orcid.org/0000-0003-3592-8944</orcidid><orcidid>https://orcid.org/0000-0001-5380-2363</orcidid><orcidid>https://orcid.org/0000-0003-3052-7076</orcidid><orcidid>https://orcid.org/0000-0002-8521-8652</orcidid><orcidid>https://orcid.org/0000-0002-3659-8978</orcidid></search><sort><creationdate>20201124</creationdate><title>Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity</title><author>Hourlier-Fargette, Aurélie ; Schon, Stéphanie ; Xue, Yeguang ; Avila, Raudel ; Li, Weihua ; Gao, Yiwei ; Liu, Claire ; Kim, Sung Bong ; Raj, Milan S ; Fields, Kelsey B ; Parsons, Blake V ; Lee, KunHyuck ; Lee, Jong Yoon ; Chung, Ha Uk ; Lee, Stephen P ; Johnson, Michael ; Bandodkar, Amay J ; Gutruf, Philipp ; Model, Jeffrey B ; Aranyosi, Alexander J ; Choi, Jungil ; Ray, Tyler R ; Ghaffari, Roozbeh ; Huang, Yonggang ; Rogers, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-91df56be990ce5176f521c7d64ba72198bca51073506b0f22ef5aa554131291a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioengineering</topic><topic>Biomarkers</topic><topic>Biosensing Techniques</topic><topic>Bluetooth</topic><topic>Collection</topic><topic>Conductivity</topic><topic>Configurations</topic><topic>Corrosion potential</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Finite element method</topic><topic>Human performance</topic><topic>Humans</topic><topic>Inspection</topic><topic>Lab-On-A-Chip Devices</topic><topic>Life Sciences</topic><topic>Microfluidics</topic><topic>Modular systems</topic><topic>Physical exercise</topic><topic>Physics</topic><topic>Skin</topic><topic>Sweat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hourlier-Fargette, Aurélie</creatorcontrib><creatorcontrib>Schon, Stéphanie</creatorcontrib><creatorcontrib>Xue, Yeguang</creatorcontrib><creatorcontrib>Avila, Raudel</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Gao, Yiwei</creatorcontrib><creatorcontrib>Liu, Claire</creatorcontrib><creatorcontrib>Kim, Sung Bong</creatorcontrib><creatorcontrib>Raj, Milan S</creatorcontrib><creatorcontrib>Fields, Kelsey B</creatorcontrib><creatorcontrib>Parsons, Blake V</creatorcontrib><creatorcontrib>Lee, KunHyuck</creatorcontrib><creatorcontrib>Lee, Jong Yoon</creatorcontrib><creatorcontrib>Chung, Ha Uk</creatorcontrib><creatorcontrib>Lee, Stephen P</creatorcontrib><creatorcontrib>Johnson, Michael</creatorcontrib><creatorcontrib>Bandodkar, Amay J</creatorcontrib><creatorcontrib>Gutruf, Philipp</creatorcontrib><creatorcontrib>Model, Jeffrey B</creatorcontrib><creatorcontrib>Aranyosi, Alexander J</creatorcontrib><creatorcontrib>Choi, Jungil</creatorcontrib><creatorcontrib>Ray, Tyler R</creatorcontrib><creatorcontrib>Ghaffari, Roozbeh</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hourlier-Fargette, Aurélie</au><au>Schon, Stéphanie</au><au>Xue, Yeguang</au><au>Avila, Raudel</au><au>Li, Weihua</au><au>Gao, Yiwei</au><au>Liu, Claire</au><au>Kim, Sung Bong</au><au>Raj, Milan S</au><au>Fields, Kelsey B</au><au>Parsons, Blake V</au><au>Lee, KunHyuck</au><au>Lee, Jong Yoon</au><au>Chung, Ha Uk</au><au>Lee, Stephen P</au><au>Johnson, Michael</au><au>Bandodkar, Amay J</au><au>Gutruf, Philipp</au><au>Model, Jeffrey B</au><au>Aranyosi, Alexander J</au><au>Choi, Jungil</au><au>Ray, Tyler R</au><au>Ghaffari, Roozbeh</au><au>Huang, Yonggang</au><au>Rogers, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2020-11-24</date><risdate>2020</risdate><volume>20</volume><issue>23</issue><spage>4391</spage><epage>4403</epage><pages>4391-4403</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33089837</pmid><doi>10.1039/d0lc00705f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1968-5092</orcidid><orcidid>https://orcid.org/0000-0003-4308-389X</orcidid><orcidid>https://orcid.org/0000-0002-1792-1506</orcidid><orcidid>https://orcid.org/0000-0002-0148-4145</orcidid><orcidid>https://orcid.org/0000-0003-3082-349X</orcidid><orcidid>https://orcid.org/0000-0002-8133-5026</orcidid><orcidid>https://orcid.org/0000-0002-0483-8359</orcidid><orcidid>https://orcid.org/0000-0003-1626-7669</orcidid><orcidid>https://orcid.org/0000-0001-7047-9676</orcidid><orcidid>https://orcid.org/0000-0003-3592-8944</orcidid><orcidid>https://orcid.org/0000-0001-5380-2363</orcidid><orcidid>https://orcid.org/0000-0003-3052-7076</orcidid><orcidid>https://orcid.org/0000-0002-8521-8652</orcidid><orcidid>https://orcid.org/0000-0002-3659-8978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2020-11, Vol.20 (23), p.4391-4403
issn 1473-0197
1473-0189
language eng
recordid cdi_hal_primary_oai_HAL_hal_03414102v1
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bioengineering
Biomarkers
Biosensing Techniques
Bluetooth
Collection
Conductivity
Configurations
Corrosion potential
Electrodes
Electronics
Finite element method
Human performance
Humans
Inspection
Lab-On-A-Chip Devices
Life Sciences
Microfluidics
Modular systems
Physical exercise
Physics
Skin
Sweat
title Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin-interfaced%20soft%20microfluidic%20systems%20with%20modular%20and%20reusable%20electronics%20for%20in%20situ%20capacitive%20sensing%20of%20sweat%20loss,%20rate%20and%20conductivity&rft.jtitle=Lab%20on%20a%20chip&rft.au=Hourlier-Fargette,%20Aur%C3%A9lie&rft.date=2020-11-24&rft.volume=20&rft.issue=23&rft.spage=4391&rft.epage=4403&rft.pages=4391-4403&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d0lc00705f&rft_dat=%3Cproquest_hal_p%3E2464313529%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464313529&rft_id=info:pmid/33089837&rfr_iscdi=true